-
Notifications
You must be signed in to change notification settings - Fork 0
/
bigram.py
128 lines (107 loc) · 4.36 KB
/
bigram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
from torch.nn import functional as F
#hyperparameters
batch_size = 32 #how many independent sequences will we process in parallel
block_size = 8 #how many characters will we look back at to predict the next character
max_iters = 30000
eval_interval = 300
learning_rate = 1e-2
device = 'mps' if torch.backends.mps.is_available() else 'cpu'
eval_iters = 200
n_embed = 32
torch.manual_seed(1337)
# reading the data
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
#all the unique characters that occur in the text
chars = sorted(list(set(text)))
vocab_size = len(chars)
#mapping from characters to integers
stoi = {ch:i for i, ch in enumerate(chars)}
itos = {i:ch for i, ch in enumerate(chars)}
encode = lambda s: [stoi[c] for c in s] #encoder - take a string an output list of integers
decode = lambda l: ''.join([itos[i] for i in l]) #decoder - take a list of integers and output text
# train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data))
train_data = data[:n]
val_data = data[n:]
# data loading
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size, ))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i+1 : i + block_size + 1] for i in ix])
x, y = x.to(device) , y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
#each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.pos_embedding_table = nn.Embedding(vocab_size, n_embed)
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
# idx and targets are both (B,T) tensor of integers
B, T = idx.shape
tok_emb = self.token_embedding_table(idx) # B, T, C/n_embed
pos_emb = self.pos_embedding_table(torch.arange(T, device=device)) #T,C
x = tok_emb + pos_emb # (B, T, C) + (T, C) = (B, T, C)
logits = self.lm_head(x) # B, T, C/Vocab size
if targets is None:
loss = None
else :
#loss = F.cross_entropy(logits, targets) # this won't work as pytorch expets in the form of B, C, T and we have logits in the form of B, T, C
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
#idx is (B,T) array of indices in the current context
for _ in range(max_new_tokens):
#get the predictions
logits ,loss = self(idx)
#focus only on the last time step
logits = logits[:, -1, :] # becomes (B,C) # taking only the last character to predict the next one as we are making a bigram model
#apply softmax to get probs
probs = F.softmax(logits, dim=-1) #(B,C)
#get the prediction from the sample
idx_next = torch.multinomial(probs, num_samples=1) #(B,1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) #(B, T+1)
return idx
model = BigramLanguageModel()
m = model.to(device)
#create a pytorch optimizer
optimizer = torch.optim.AdamW(m.parameters(), lr=1e-3) #typical is 3e-4 - but this 1e-3 high rate would work for our small nn
for iter in range(max_iters):
#every once in a while evaluate the loss of train and val data
if iter % eval_interval == 0 :
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
#sample a batch of data
xb, yb = get_batch('train')
#evaluate the loss
logits, loss = m(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
print(loss.item())
#generate from the model
context = torch.zeros((1,1), dtype=torch.long, device=device) #sending in the newline character (a 1*1 input tensor containing zero (batch size = 1 and input/ T = 1 as well containing 0))
print(decode(m.generate(context, max_new_tokens=300)[0].tolist()))