-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpt.py
217 lines (182 loc) · 7.48 KB
/
gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import torch.nn as nn
from torch.nn import functional as F
#hyperparameters
batch_size = 64 #how many independent sequences will we process in parallel
block_size = 256 #how many characters will we look back at to predict the next character
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = 'mps' if torch.backends.mps.is_available() else 'cpu'
eval_iters = 200
n_embed = 384
n_head = 6
n_layer = 6
dropout = 0.2
torch.manual_seed(1337)
# reading the data
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
#all the unique characters that occur in the text
chars = sorted(list(set(text)))
vocab_size = len(chars)
#mapping from characters to integers
stoi = {ch:i for i, ch in enumerate(chars)}
itos = {i:ch for i, ch in enumerate(chars)}
encode = lambda s: [stoi[c] for c in s] #encoder - take a string an output list of integers
decode = lambda l: ''.join([itos[i] for i in l]) #decoder - take a list of integers and output text
# train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data))
train_data = data[:n]
val_data = data[n:]
# data loading
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size, ))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i+1 : i + block_size + 1] for i in ix])
x, y = x.to(device) , y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
"""single head of self attention"""
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embed, head_size, bias = False)
self.query = nn.Linear(n_embed, head_size, bias =False)
self.value = nn.Linear(n_embed, head_size, bias = False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.head_size = head_size
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x) #B,T, head_size
q = self.query(x) #B,T, head_size
v = self.value(x)
#compute attention / affinities
wei = q @ k.transpose(-2, -1) * (self.head_size ** -0.5) #B,T,head_size @ B,head_size, T = > B, T, T
# wei = wei.masked_fill(self.tril == 0, float('-inf')) #assuming block_size = T (which is the case)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) #because during generation there could be arbitrary number of input tokens which can break as tril will be of max block size
wei = F.softmax(wei, dim = -1) #B,T,T
wei = self.dropout(wei)
out = wei @ v # B,T, head_size
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embed, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self,x):
out = torch.cat([h(x) for h in self.heads], dim = -1)
out = self.dropout(self.proj(out))
return out
class FeedForwardMLP(nn.Module):
""" a simple linear layer followed by a non linearity"""
def __init__(self, n_embed):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed, 4 * n_embed), #scaled up as per the transformers paper
nn.ReLU(),
nn.Linear(4 * n_embed, n_embed), #projection layer
nn.Dropout(dropout)
)
def forward(self,x):
return self.net(x)
class Block(nn.Module):
"""Transformer block - communication followed by computation"""
def __init__(self, n_embed, num_heads):
super().__init__()
head_size = n_embed // num_heads
self.sa = MultiHeadAttention(num_heads, head_size)
self.ffwd = FeedForwardMLP(n_embed)
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self, x):
#applying pre norm (modern way) and addition of gradient super highway for better initialisation
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
#each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.pos_embedding_table = nn.Embedding(block_size, n_embed) # max position can be upto block size
# self.sa_heads = MultiHeadAttention(4, n_embed // 4 )
# self.ffwd = FeedForwardMLP(n_embed)
# self.blocks = nn.Sequential(
# Block(n_embed, num_heads=4),
# Block(n_embed, num_heads=4),
# Block(n_embed, num_heads=4),
# )
self.blocks = nn.Sequential(*[Block(n_embed, num_heads=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embed) #there should be a layernorm right before the lm head as well
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
# idx and targets are both (B,T) tensor of integers
B, T = idx.shape
tok_emb = self.token_embedding_table(idx) # B, T, C/n_embed
pos_emb = self.pos_embedding_table(torch.arange(T, device=device)) #T,C
x = tok_emb + pos_emb # (B, T, C) + (T, C) = (B, T, C)
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x) # B, T, C/Vocab size
if targets is None:
loss = None
else :
#loss = F.cross_entropy(logits, targets) # this won't work as pytorch expets in the form of B, C, T and we have logits in the form of B, T, C
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
#idx is (B,T) array of indices in the current context
for _ in range(max_new_tokens):
#crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
#get the predictions
logits ,loss = self(idx_cond)
#focus only on the last time step
logits = logits[:, -1, :] # becomes (B,C) # taking only the last character to predict the next one as we are making a bigram model
#apply softmax to get probs
probs = F.softmax(logits, dim=-1) #(B,C)
#get the prediction from the sample
idx_next = torch.multinomial(probs, num_samples=1) #(B,1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) #(B, T+1)
return idx
model = BigramLanguageModel()
m = model.to(device)
#create a pytorch optimizer
optimizer = torch.optim.AdamW(m.parameters(), lr=1e-3) #typical is 3e-4 - but this 1e-3 high rate would work for our small nn
for iter in range(max_iters):
#every once in a while evaluate the loss of train and val data
if iter % eval_interval == 0 :
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
#sample a batch of data
xb, yb = get_batch('train')
#evaluate the loss
logits, loss = m(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
print(loss.item())
#generate from the model
context = torch.zeros((1,1), dtype=torch.long, device=device) #sending in the newline character (a 1*1 input tensor containing zero (batch size = 1 and input/ T = 1 as well containing 0))
print(decode(m.generate(context, max_new_tokens=3000)[0].tolist()))