-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstupidplot.py
492 lines (410 loc) · 13.9 KB
/
stupidplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
#!/usr/bin/python
"""Stupid Plot
A stupid Python wrapper around GnuPlot. It automates some of the tasks involved
in creating GnuPlot output from Python data.
To use it, call the gnuplotTable() function with your data (2D list) and output
file. It will do its best attempt to plot it in EPS format. To customize stuff, use
the gnuplotOptions dictionary. You will likely need to know a bit about
GnuPlot and read the source to this module to understand what is going on.
"""
import math
import os
import tempfile
# A few "standard" label types
# 12.345
EXPONENTIAL_LABEL = "%.0t{/Symbol \264}10^{%T}" # 1*10^1
EXPONENTIAL_LABEL1 = "%.1t{/Symbol \264}10^{%T}" # 1*10^1
def histogram( data, numBuckets, minTruncate=None, maxTruncate=None ):
'''Pass in a list of data values and the number of buckets. It will return a list of
coordinates that will draw a nice histogram in GnuPlot with lines.'''
data = list( data )
data.sort()
minValue = data[0]
maxValue = data[-1]
if maxTruncate != None:
maxValue = min( maxTruncate, maxValue )
if minTruncate != None:
assert minTruncate < maxValue
minValue = max( minTruncate, minValue )
interval = float(maxValue-minValue)/numBuckets
buckets = []
bucketCount = 0
bucketLimit = minValue + interval
for value in data:
while value > bucketLimit and len(buckets) < numBuckets-1:
#~ print bucketLimit, bucketCount
buckets.append( bucketCount )
bucketLimit = minValue + interval*(len( buckets ) + 1)
bucketCount = 0
if value > maxValue:
break
bucketCount += 1
buckets.append( bucketCount )
assert abs( bucketLimit - maxValue ) < 0.00001
# Draw the line for gnuplot
total = float( len( data ) )
out = []
# Start at zero
if buckets[0] != 0:
out.append( (minValue, 0) )
previous = minValue
for i, bucketCount in enumerate( buckets ):
next = minValue + interval*(i + 1)
out.append( (previous, bucketCount/total*100.0) )
out.append( (next, bucketCount/total*100.0) )
previous = next
# End at zero
if buckets[-1] != 0:
out.append( (previous, 0) )
assert abs( out[-1][0] - maxValue ) < 0.00001
return out
# T statistic for 0.05 confidence (95%)
# Computed with Excel: =TINV(0.05, x)
# TODO: Import python code for computing this
T_TABLE = [
None,
12.706204733987,
4.30265272954454,
3.18244630488688,
2.77644510504380,
2.57058183469754,
2.44691184643268,
2.36462425094932,
2.30600413329912,
2.26215715817358,
2.22813884242587,
2.20098515872184,
2.17881282716507,
2.16036865224854,
2.14478668128208,
2.13144953567595,
2.11990528516258,
2.10981555859266,
2.10092203686118,
2.09302404985486,
2.08596344129554,
2.07961383708272,
2.07387305831561,
2.06865759861054,
2.06389854731807,
2.05953853565859,
2.05552941848069,
2.05183049297067,
2.04840711466289,
2.04522961110855,
2.04227244936679,
2.03951343844151,
2.03693333440703,
2.03451528722141,
2.03224449783959,
2.03010791544831,
2.02809398678268,
2.02619244736580,
2.02439414671557,
2.02269090124204,
2.02107536985045,
2.01954094826419,
2.01808167886218,
2.01669217343735,
2.01536754676655,
2.01410335926697,
2.01289556732150,
2.01174048010300,
2.01063472192628,
2.00957519932024,
2.00855907214326,
2.00758372817470,
2.00664676070409,
2.00574594871316,
2.00487927499539,
2.00404476937785,
2.00324070420509,
2.00246544390452,
2.00171746800345,
2.00099536118020,
2.00029780432954,
1.99962356652375,
1.99897149776650,
1.99834052244951,
1.99772963343394,
1.99713788668814,
1.99656439642122,
1.99600833066037,
1.99546890722492,
1.99494539005665,
1.99443708586968,
1.99394334108840,
1.99346353904453,
1.99299709740838,
1.99254346583172,
1.99210212378202,
1.99167257855056,
1.99125436341783,
1.99084703596246,
1.99045017650031,
1.99006338664240,
1.98968628796136,
1.98931852075642,
1.98895974290966,
1.98860962882431,
1.98826786843964,
1.98793416631522,
1.98760824077917,
1.98728982313560,
1.98697865692559,
1.98667449723875,
1.98637711007022,
1.98608627172049,
1.98580176823426,
1.98552339487556,
1.98525095563659,
1.98498426277744,
1.98472313639477,
1.98446740401708,
1.98421690022499,
1.98397146629437]
def stats(r):
"""Returns statistics about a sequence of numbers.
Returns (average, median, standard deviation, min, max, 95% confidence interval)"""
total = sum(r)
average = total/float(len(r))
sum_deviation_squared = sum([(i-average)**2 for i in r])
standard_deviation = math.sqrt(sum_deviation_squared/(len(r)-1 or 1))
s = list(r)
s.sort()
median = s[len(s)/2]
minimum = s[0]
maximum = s[-1]
# z value for 95% confidence interval is ~1.96
# This isn't correct for sampled data, since we don't *know* the standard deviation
# See: http://davidmlane.com/hyperstat/
# confidence_95 = 1.959963984540051 * standard_deviation / math.sqrt(len(r))
# We must estimate both using the t distribution:
# http://davidmlane.com/hyperstat/B7483.html
# s_m = s / sqrt(N)
s_m = standard_deviation / math.sqrt(len(r))
# Degrees of freedom = n-1
# t = t(degrees_of_freedom, 0.05)
# confidence = +/- t * s_m
confidence_95 = T_TABLE[len(r)-1] * s_m
return median, average, standard_deviation, minimum, maximum, confidence_95
def hackDottedStyle( epsFile ):
'''GNUPlot's default dotted line styles suck. This will hack the given EPS so
the lines are more easily distinguishable.'''
f = file( epsFile )
inLines = f.readlines()
f.close()
output = file( epsFile, 'w' )
for line in inLines:
if line.startswith( '/LT1 {' ):
output.write( '/LT1 { PL [8 dl1 4 dl2] LC1 DL } def\n' )
elif line.startswith( '/LT2 {' ):
output.write( '/LT2 { PL [4 dl1 3 dl2] LC2 DL } def\n' )
elif line.startswith( '/LT3 {' ):
output.write( '/LT3 { PL [2 dl1 2 dl2] LC3 DL } def\n' )
elif line.startswith( '/LT4 {' ):
output.write( '/LT4 { PL [5 dl1 2 dl2 1 dl1 2 dl2 1 dl1 2 dl2 1 dl1 2 dl2] LC4 DL } def\n' )
elif line.startswith( '/LT5 {' ):
output.write( '/LT5 { PL [5 dl1 2 dl2 5 dl1 8 dl2] LC5 DL } def\n' )
elif line.startswith( '/LT6 {' ):
output.write( '/LT6 { PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 8 dl2] LC6 DL } def\n' )
elif line.startswith( '/LT7 {' ):
output.write( '/LT7 { PL [8 dl1 5 dl2 1 dl1 5 dl2] LC7 DL } def\n' )
else:
output.write( line )
output.close()
def hackBarChartColor( epsFile, numBars, skip=0 ):
'''Creates a legible greyscale bar chart EPS from a color one.'''
f = file( epsFile )
inLines = f.readlines()
f.close()
colors = []
# Create even colors from black to white
color = 0.0
step = 1.0
if numBars > 1: step = 1.0 / (numBars-1)
while len( colors ) < numBars:
colors.append( color )
color = len( colors ) * step
output = file( epsFile, 'w' )
for line in inLines:
if line.startswith( '/LT' ) and line[3].isdigit():
barNumber = int( line[3] )
if barNumber + skip < len( colors ):
color = colors[barNumber+skip]
output.write( '/LT%d { PL [] %f %f %f DL } def\n' % ( barNumber, color, color, color ) )
# Skip the rest of the processing
continue
output.write( line )
output.close()
# The default plot formatting options; overridden by user code
DEFAULT_OPTIONS = {
"gnuplot": "gnuplot",
"title" : "",
"xrange": "[]",
"yrange": "[]",
"ylabel": "Y Axis Values",
"grid": "",
"xformat": r"%0.1s%c",
"yformat": r"%0.1s%c",
"linewidth": 4,
"fontsize": 16,
"color": True,
"dashed": False,
"plottype": "lines", # Changed the default "plottype"
"plottypes": {}, # Overrides the default "plottype"
"key": "",
"size": "",
"boxstuff": "",
"pointsize": "",
"colors": {},
}
# NOTE: If you pass "plottype": 'barchart' this script tries to plot a nice bar chart
def gnuplotTable( table, outputFile, gnuplotOptions={} ):
"""table - 2D list of data. The first row is taken as headers.
outputFile - The output of GnuPlot goes here (in .eps format).
gnuplotOptions - A dict used to customize the behaviour of gnuplot."""
# Make table into tables, unless it already is
tables = table
if not isinstance( tables[0][0], list ) and not isinstance( tables[0][0], tuple ):
tables = ( tables, )
# For the tables to work, the first column must have the same header, not necissarily the same values
for table in tables:
assert( table[0][0] == tables[0][0][0] )
# Copy the user supplied options into our options dictionary
options = dict(DEFAULT_OPTIONS)
options["xlabel"] = tables[0][0][0]
for key,value in gnuplotOptions.items():
options[key] = value
# Add "set key " to the front of the key option, if it was specified
if options["key"] != "":
if options["key"] is False:
options["key"] = "set nokey"
else:
options["key"] = "set key " + options["key"]
# Add "set size " to the front of the size option, if it was specified
if options["size"] != "": options["size"] = "set size " + options["size"]
# Add "set pointsize " to the front of the size option, if it was specified
if options["pointsize"] != "": options["pointsize"] = "set pointsize " + str( options["pointsize"] )
color = "color"
solid = "set terminal postscript solid"
if not options["color"] and options['plottype'] != 'barchart':
color = "monochrome"
solid = ""
if options["color"] and options["dashed"]:
solid = ""
boxWidth = None
if options['plottype'] == 'barchart':
options['barchart'] = True
options['xformat'] = "%s"
xtics = [ None ]
# Number of X values = number of rows in the tables
numXValues = len( tables[0] ) - 1
# Number of boxes = number of columns in the tables
numBoxes = 0
for table in tables:
numBoxes += (len( table[0] ) - 1)
for i, row in enumerate( table ):
#~ print i, row
if i == 0: continue
if i < len( xtics ):
assert( row[0] == xtics[i] )
else:
xtics.append( row[0] )
row[0] = i
# This box width is sufficient to leave one empty box between clusters
boxWidth = 1.0 / (1 + numBoxes)
options['xrange'] = "[%f:%f]" % (1 - (boxWidth*numBoxes)/2, numXValues + (boxWidth*numBoxes)/2)
options['grid'] = 'noxtics ytics linewidth 2.0'
options['plottype'] = 'boxes'
xticString = "( "
for i, x in enumerate( xtics ):
if i == 0: continue
xticString += '"%s" %d, ' % ( x, i )
xticString = xticString[:-2] + ")"
#set xtics rotate %s\n
options['boxstuff'] = 'set ticscale 0 0\nset xtics %s\nset boxwidth %f\nset style fill solid border -1' % ( xticString, boxWidth )
# Gnuplot output
scriptfile = """
set title "%s"
set xlabel "%s"
set ylabel "%s"
set grid %s
# Set the axes to engineering notation
set format x '%s'
set format y '%s'
set xrange %s
set yrange %s
set terminal postscript "Helvetica" %d
set terminal postscript %s # color or monochrome
%s # Use solid or dotted lines
set terminal postscript eps enhanced
set output "%s"
%s
%s
%s
%s
""" % ( options["title"], options["xlabel"], options["ylabel"],
options["grid"], options["xformat"], options["yformat"],
options["xrange"], options["yrange"], options["fontsize"],
color, solid, outputFile, options["key"], options["size"], options["boxstuff"],
options["pointsize"] )
if 'xtics' in options:
scriptfile += 'set xtics %s\n' % options['xtics']
if 'calculated' in options:
scriptfile += 'f(x) = %s\n' % options['calculated']
tempDataFiles = []
plotLines = []
linecount = 1
for table in tables:
data = tempfile.NamedTemporaryFile()
# Skip the headers in the data files. On occasion they confuse GnuPlot
for line in table[1:]:
data.write( "\t".join( [str(i) for i in line] ) )
data.write( "\n" )
data.flush()
tempDataFiles.append( data )
headings = table[0]
for i,heading in enumerate( headings[1:] ):
# Skip this column if it is an error bar column. Error bar columns
# are expressed in the ORIGINAL table columns: That is, column 1
# there = column 0 here (we skip the x-axis column
if "errorbars" in options and (i in options["errorbars"] or i-1 in options["errorbars"]): continue
plottype = options["plottype"]
if i in options["plottypes"]: plottype = options["plottypes"][i]
color = ""
if linecount in options["colors"]:
color = "linecolor %s" % (options["colors"][linecount])
if boxWidth:
offset = (-(numBoxes-1)/2.0 + i) * boxWidth
#~ print "numBoxes =", numBoxes, "boxWidth =", boxWidth, "i =",i, "offset =", offset
plotLines.append( ' "%s" using ($1+%f):%d title "%s" with %s' % ( data.name, offset, i+2, heading, plottype ) )
else:
plotLines.append( ' "%s" using 1:%d title "%s" with %s linetype %d linewidth %d %s' % ( data.name, i+2, heading, plottype, linecount, options["linewidth"], color ) )
if "errorbars" in options and i+1 in options["errorbars"]:
# Set the linetype so it looks the same as the line we drew
# Set pointsize to 0 because otherwise gnuplot puts a cross or other point at the midpoint
errorbar_linetype = 1
if options["color"] and color == "":
color = "linecolor %d" % linecount
plotLines.append( '"%s" using 1:%d:%d:%d notitle with yerrorbars linetype 1 linewidth %f %s pointsize 0' % ( data.name, i+2, i+3, i+4, options["linewidth"] * 0.25, color ) )
linecount += 1
if 'calculated' in options:
plotLines.insert( 0, 'f(x) with lines' )
scriptfile += "plot " + ", ".join( plotLines )
script = tempfile.NamedTemporaryFile()
script.write( scriptfile )
script.flush()
#~ import shutil
#~ shutil.copyfile( data.name, "data.txt" )
#~ shutil.copyfile( script.name, "script.txt" )
code = os.spawnlp( os.P_WAIT, options["gnuplot"], options["gnuplot"], script.name )
assert( code == 0 )
script.close()
for data in tempDataFiles:
data.close()
if not options['color'] or options['dashed']:
if 'barchart' in options and options['barchart']:
hackBarChartColor( outputFile, numBoxes )
else:
hackDottedStyle( outputFile )