-
Field
- Consists of a set
$\mathcal{F}$ , and two operations$+$ and$\cdot$ over the set$\mathbb{F}$ (resp.$\mathbb{F} \backslash {0}$ ), such that the set and the operation form an abelian group (commutative group) - Another important property holds (distributivity) - for $a,b,c \in \mathbb{F}, a * (b + c) = ab + ac$
- If
$\mathbb{F}$ is finite, then the field$\mathbb{F}$ is also finite -
Order
- Order is the number of elements in the field, there exists a finite field of order
$q$ iff$q = p^m$ where$p$ is a prime number (aka. the characteristic of$\mathbb{F}$ )- If
$m = 1$ , then$\mathbb{F}$ is a prime field, if$m \geq 2$ , then$\mathbb{F}$ is an extension field
- If
- Order is the number of elements in the field, there exists a finite field of order
- Consists of a set
-
Binary Field
- Fields of order
$q = 2^m$ - Can construct field $\mathbb{F}{2^m}$ by use of binary polynomial i.e $$p(z) = \Sigma{0 \leq i \leq m-1} a_i z^i$$
- where
$a_i \in \mathbb{F}_2$ -
Constructing field via polynomial
- Set of polynomials of degree
$\leq m - 1$ , and coefficients in$\mathbb{F}_{2^m}$ , - Multiplication is modulo unique reduction polynomial of order
$2^m$ - Each irreducible polynomial of order
$q$ creates a new field that is isomorphic
- Set of polynomials of degree
- Fields of order
-
Extension Fields
- Let
$\mathbb{F}_p[z]$ be the set of polynomials with coefficients in $\mathbb{F}p$, then each finite field $\mathbb{F}{p^m}$ is isomorphic to the field of polynomials, with multiplication performed over the irreducible polynomial$f(z) \in \mathbb{F}_p[z]$
- Let
-
Subfields
- A subset
$k \subseteq K$ of a field$K$ is a subfield of$K$ if$k$ is also a field wrt.$+_K$ and$\cdot_K$ - Let $\mathbb{F}{p^m}$, has a subfield $\mathbb{F}{p^l}$ for each positive
$l, l|m$ , let $a \in \mathbb{F}{p^m}$, and $\mathbb{F}{p^l} \subseteq \mathbb{F}{p^m}$, then $a \in \mathbb{F}{p^l}$ iff,$a^{p^l} = a$ in$\mathbb{F}_{p^m}$ - Note the above is determined by the abelian grp structure of
$\mathbb{F}_{p^m}$ wrt.$\cdot$
- Note the above is determined by the abelian grp structure of
- A subset
-
Bases of finite Field
- The finite field
$\mathbb{F}_{q^n}[z]$ can be viewed as a vector space over the sub-field$\mathbb{F}_q$ - Trivial basis
${1, z, z^2, \cdots , z^{n-1}}$ , let$a \in \mathbb{F}_{p^n}[z]$ , then$a = \Sigma_i a_i \cdots z^i$
- The finite field
-
Multiplicative Group of Finite Field
- Let
$\mathbb{F}_q$ be a finite field, then$\mathbb{F}_q^*$ is a cyclic group,$(\mathbb{F}_q\backslash {0}, \cdot)$ ,- Let $b \in \mathbb{F}_q^$, then $b$ is a generator iff $\mathbb{F}_q^ = {b^i : 0\leq i \leq q-2}$
- Let
-
Prime Field Arithmetic (implementation)
- Represent prime field
$\mathbb{F}_p$ , let$W$ be the word-length (generally 64-bit) - Let
$m = \lceil log_2(p) \rceil$ , i.e the bit-length of$p$ and$t = \lceil \frac{m}{W} \rceil$ it's word-length - Let
$a$ be represented as$A[..]$ , then$$a = A[t - 1]2^{(t -1) * W} + \cdots + A[1]2^{W} + A[0] $$ - I.e primes reprsented in base
$2^W$ , and$A[i] \leq 2^W -1$ - Represent integer of word-length by
uint
in go - Assignment
$(\epsilon, z ) \leftarrow w$ , means$z \leftarrow w \space mod \space 2^W$ $\epsilon \leftarrow !bool(w \in [0, 2^W))$
- let
$a, b \in [0, 2^{W *t}]$ , i.e both integers of word-legth$t$ - Then their addition is defined as follows, which returns
$(\epsilon, c) \leftarrow a + b$ , where$c = C[0] + \cdots + C[t-1]2^{(t - 1) W} + 2^{W * t} \epsilon$
$(\epsilon, C[0]) \leftarrow A[0] + B[0]$ - For
$0 < i \leq t -1$ $(\epsilon, C[i]) \leftarrow A[i] + B[i] + \epsilon$
- Return
$(\epsilon, c)$
- Subtraction is defined analogously, i.e it returns
$(\epsilon, c) \leftarrow a - b$ , where$c = C[0] + \cdots + C[t-1]2^{(t-1)W} - \epsilon*2^{Wt}$
$(\epsilon, C[0]) \leftarrow A[0] - B[0]$ - For
$0 \leq i \leq t -1$ $(\epsilon, C[i]) \leftarrow A[i] - B[i] - \epsilon$
- Return
$(\epsilon, c)$
- I.e primes reprsented in base
- Represent prime field
-
Number Theory
- Let
$n \in \mathbb{Z}_{>0}$ , then$\mathbb{Z}_n$ (the integers mod$n$ ) is a group wrt addition - Let
$\mathbb{Z}_n^X = {a \in \mathbb{Z}: gcd(a, n) = 1}$ , then$1 \in \mathbb{Z}_n^X$ , and the set is closed over multiplication- I.e
$\mathbb{Z}_n^X = \mathbb{Z}_n$ for prime$n$ , and$\mathbb{Z}$ is a field
- I.e
-
$\phi(n)$ denotes the set of integers that are relatively prime to$n$ , notice, by euler's thm.$a^{p-1} \equiv 1 (p)$ , then$o(a) | p - 1$ -
primitive root mod
$p$ is an integer$a$ such that$o(a) = p -1$ (i.e$a$ is a generator for$\mathbb{Z}_p^X$ )- primitive root always exists, thus
$\mathbb{Z}_n^X$ is a cyclic group (always has a generator)
- primitive root always exists, thus
- Let
-
Groups
-
$(G, +)$ , where$G$ is a binary operation- $ 0 \in G$, where
$0 + g = g + 0$ (identity) - Existence of additive inverse, i.e
$\exists -g \in G, (-g) + g = g + (-g) = 0$
- $ 0 \in G$, where
-
order is number of elements in group
-
$g \in G$ , then$o(g) := min (k), mg^k = 0$
-
- Let
$H \subset G$ (where$H$ is a subgroup of$G$ ), then$o(H) | o(G)$ -
structure theorems
- Let
$G_1, G_2$ be groups, they are isomorphic, if there exists$\phi : G_1 \rightarrow G_2$ , such that$\phi$ is a bijection, and$\phi(g * h) = \phi(g) * \phi(h)$
- Let
-
Fields
- Let
$K$ be a field, There is a ring homo-morphism$\phi: \mathbb{Z} \rightarrow K$ that sends$1 \in \mathbb{Z} \rightarrow 1 \in K$ , if$\phi$ is injective, then$K$ has characteristic 0, otherwise there exists$p$ such that$\phi(p) = 0$ , and$p$ is the characteristic of$K$ -
$p$ is prime, as suppose$p = ab$ , then$\phi(p) = phi(ab) = \phi(a)\phi(b) = 0$ , and either$a$ or$b$ contradicts the minimality of$p$ , thus$p$ is prime.
-
- Let
$K$ and$L$ be fields, with$K \subseteq L$ . If$\alpha \in L$ , then$\alpha$ is algebraic if there exists$f(x) = \Sigma_i a_i x^i$ , there$f(\alpha) = 0$ , and$a_0, \cdots, a_n \in K$ - If every element
$k \in L$ is algebraic over$K$ , the$L$ is an algebraic extension of$K$ - The algebraic closure of
$K$ ,$\overline{K}$ -
$\overline{K}$ is algebraic over$K$ - Every non-constant polynomial
$f(X)$ with coefficients in$\overline{K}$ has a root in$\overline{K}$ (algebraically closed) - i.e any poly in
$\overline{K}$ is factorable
-
- Let
-
-
Pairings
- Elliptic curves are an abstract type of group defined on top of (over a field)
- Use finite-fields in crypto b.c it is easier to represent in a computer
- Let
$K$ be a field, then$(x ,y) \in E$ (the elliptic curve), where$x, y \in \overline{K}$ , which satisfy$$E: t^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$ - Where
$a_1, \cdots, a_6 \in \overline{K}$ , there is also one point$\mathcal{O} \in E$ but does not satisfy the Weierstrass equation- point at infinity - needed so that E is a group
- Elliptic curves are an abstract type of group defined on top of (over a field)
-
Algebra
-
Pre-reqs
- Let
$a, b \in \mathbb{Z}$ , and$d = gcd(a, b)$ ,$\exist s, t \in \mathbb{Z}, at + sb = d$ - If
$p | a_1 \cdots a_n$ , then$p | a_i$ , for some$i$ - Suppose
$a \equiv b (m)$ , then$m | a -b$ , congruence is an equivalence relation (symmetric,reflexive, transitive) - If
$ax \equiv ay (m)$ , and$d = gcd(a, m)$ , then$x \equiv y (m/d)$ - notice
$m = kd, a = ld$ , and$cm = a(x - y)$
- notice
- If
$a_i$ divide$b$ , and$gcd(a_i, a_j) = 1$ , then$a_1 \cdots a_r | b$ -
Chinese Remainder Theorem
- If
$m_1, \cdots, m_n$ are relatively prime in pairs ($gcd(m_i, m_j) = 1$ ), and$x_j \equiv b_j (m_j)$ , then a solution$x \equiv b (m_1 \cdots m_n)$ exists
- If
-
euler totient fn - Defined
$\phi(m) = |{x : \mathbb{Z_m: gcd(x, m) = 1}}|$ , where$a^{\phi(m)} \equiv 1 (m)$ -
partial order -
$R \subset S \times S$ , where$\forall x_1, x_2, x_3 \in S, (x_i, x_i) \in R$ (reflexive),$(x_1, x_2), (x_2, x_1) \in R \rightarrow x_1 = x_2$ (anti-symmetric), and$(x_1, x_2), (x_2, x_3) \in R \rightarrow (x_1, x_3) \in R$ (transitive), if$\forall x_1, x_2 \in S, (x_1, x_2) \in R \lor (x_2, x_1) \in R$ the ordering is total -
well-ordering -
$R \subset S\times S$ , where$R$ is a partial order over$S$ , and forall$S_1 \subset S$ there is a smallest element$s \in S_1$ , where$\forall s' \in S_1, s \leq s'$ - well-ordering principle - Every set can be well-ordered
-
maximum principle - Let
$T \subset S$ , where$T$ is a chain (totally ordered), then$T \subset M$ (another chain that is maximal) -
Zorn's Lemma - If
$S$ is a partially ordered set st every chain has a maximal element, then$S$ has a maximal element -
transfinite induction - To prove that
$P_i$ holds for all$i \in I$ , and$I$ is well-ordered, and the following hold- Prove
$P_0$ , where$0$ is the smallest element of$I$ - If
$i > 0$ , and$P_j$ holds for all$j < i$ , then$P_i$
- Prove
- Let
-
Groups
-
group - Non-empty set
$G$ on which a binary operation$(a, b) \rightarrow ab$ is defined such that$a, b \in G \rightarrow ab \in G$ $a(bc) = (ab)c$ - There exists
$1 \in G$ , where for all$a \in G, a1 = 1a = a$ $a \in G \rightarrow a^{-1}\in G \land aa^{-1} = a^{-1}a = 1$
-
abelian group - If binary operation is commutative, i.e
$ab = ba$ - Let
$a_1, \cdots, a_n \in G$ , then$(a_1 \cdots a_n) = (a_1 \cdots a_j)(a_{j+1} \cdots a_n) = (a_1 \cdots a_j)(a_{j + 1} \cdots a_{k+1})(a_{k+1} \cdots a_n) ...$ , proof of associativity can be given using induction?- Induct on
$n$ , and since each group will be less then$n+1$ , construct equivalent groups - Prove associativity with inductive hyp. for
$a_1 \cdots a_n$
- Induct on
- Identity uniqueness,
$1, 1' \in G$ , where$a1 = 1a = a = a1' = 1'a$ , then$1' = 1'1= 1$ , similarly w/ inverse$aa' = a'a = 1 = a''a = aa''$ ,$a' = a'aa'' = a''$ -
Subgroups
-
$H \subset G$ , and$H$ is a group, then$H$ is a subgroup of$G$ - Let
$A \subset G$ , then$\langle A \rangle \subset G$ , is the intersection of all subgroups$H, A \subset H \subset G$
-
-
Group Isomorphism
- Let
$G, H$ , be groups, and$f: G \rightarrow H$ , a bijection between them, if$a, b \in G, f(ab)= f(a )f(b)$ , and$f$ is an isomorphism, and$G, H$ are isomorphic
- Let
-
Cyclic groups
- Let
$G$ be a group,$a \in G$ , then$\langle a \langle \subset G$ , is the set${a^i }$ , notice,$\langle a \rangle$ is a group, and is abelian$a^m a^n$ (expand + apply associativity) - Thus,
$\langle a \rangle \sim \mathbb{Z}_n$ (take$f(b = a ^n) = n$ -
If
$G = \langle a \rangle$ , there is exactly one subgroup$H_d$ for each$d | n$ , where$n = O(G)$ ,- Suppose
$H \subset G$ , fix$h \in H$ where$h$ is the smallest element in$H$ , thus for all$h' \in H$ , there exists$k \in \mathbb{N}, h^k = h'$ ($H$ is cyclic, so$h = g^r, h' = g^{r'}$ ), then if$o(h) | o(G)$ , let$n = o(h)$ , then$h^{n + 1} \in H$ , and$h^{n+1} < h$ , a contradiction..
- Suppose
- For the above group, the following are equivalent
$o(a^r) = n$ -
$r$ and$n$ are relatively prime, i.e$gcd(r, n) = 1$ -
$r$ is a unit mod$n$ , i.e there exists$s \in \mathbb{Z}_n$ , where$rs \equiv 1 (n)$ (group of units is a multiplicative group in$\mathbb{Z}_n$ )
- The set
$U_n \subset \mathbb{Z}_n$ of units in$\mathbb{Z}_n$ is a group under mul.$o(U_n)= \phi(n)$
- Let
-
$1, 2$ , if$a \in (G = \langle b \rangle)$ , and$gcd(a, o(G)) = k$ , then, then $a \in \langle b^k\rangle$m which has order$o(G) / k$ - Consider
$\mathbb{Z}_6$ - Subgroups -> each have order dividing 6, then
$1, 2, 3, 6$ , i.e$\langle 0 \rangle, \langle 1 \rangle (\langle 5\rangle), \langle 2 \rangle (\langle 4 \rangle) \langle 3 \rangle$
- Subgroups -> each have order dividing 6, then
-
$\mathbb{Z} \backslash {0 }$ (what does it look like?)- Must be a multiplicative grp. (grp. of units mod
$n$ ) etc.
- Must be a multiplicative grp. (grp. of units mod
-
$a,b \in G$ , where$ab = ba$ , and$o(\langle a \rangle) = m, o(\langle b \rangle) = n$ , then$o(ab) = mn$ , and$\langle a \rangle \cap \langle b \rangle = 1_G$ - Notice, if
$ab^{mn} = 1$ , then$o(ab) | mn$ , and$ab^n = b, ab^m = a$ , thus$o(ab) = mn$ - Fix
$k \in \langle a \rangle \cap \langle b \rangle$ , then$k = b^{l_1} = a^{l_2}$ in which case$k^m = k^n = 1$ , thus$o(k) | n \land o(k) | m$ , and$o(k) = 1$ , thus$k = 1$
- Notice, if
- Infinite grp. w/ non-trivial finite sub-grp
-
$\mathbb{Z_n} \subset \mathbb{Z}$ (under addition)
-
- If
$G$ is an abelian grp., then$g \in G$ , has property$o(g) = lcm({o(a): a \in G})$ , notice, for each$a \in G, o(a) | o(G)$ , thus$o(g) = o(G)$ , i.e$\langle g \rangle = G$ - Let
$H \subset G, K \subset G$ , then$H \cup K$ is not a grp. unless$K \subset H$ (vice. versa). - Suppose
$H = \langle h_1, \cdots, h_n \rangle$ ,$K = \langle k_1, \cdots, k_m \rangle$ , for each$k_i$ , notice$\forall j, k_i h_j \in H \cup K$ , then$h_j \in K$ , or$k_i \in H$ , in either case$K \subset H$ or$H \subset K$ , - Proof using co-set rules? Notice
$O(H) | O(G)$ , and$O(K) | O(G)$ , - In an arbitrary grp. let
$a$ have finite order$n$ , and let$k$ be a positive integer. Show that$o(a^k) = n / (n, k) = [n, k] / k$ - Let
$o(a^k) = l$ , then,$n | lk = c(n, k) l$ , notice$(n, c) = 1$ , thus$l = n / (n, k)$ - To prove
$n /(n, k) = [n, k] / k$ , notice if$n = c_1 (n, k), k = c_2 (n, k)$ , then$(n, k) = 1$ , thus,$[n, k] = c_1c_2(n, k)$ - Let
$n = p_1^{e_1}\cdots p_n^{e_n}$ , let$A_i = {k \in \mathbb{Z_n}: p_i | k}$ , then$|A_i| = \frac{n}{p_i}$ ,$A_i \cap A_j = \frac{n}{p_ip_j}, \cdots$ - notice, if
$k \in A_i$ ,$k = k'p_i$ , where$1 \leq k \leq n/p_i$ , thus there are$n / p_i$ such integers - If
$k \in A_i \cap A_j$ , then$k = k' p_ip_j$ , where$1 \leq k' \leq \frac{n }{p_ip_j} \cdots$
- notice, if
- Show that the number of positive integers
$k \leq n$ , where$gcd(k, n) = 1$ , is$\phi(n) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_n})$ - Notice that
$\phi(n) = n - \Sigma A_i + \Sigma A_iA_j - \Sigma A_iA_jA_k \cdots$ , where$|A_i| = \frac{n}{p_i}, |A_iA_j| = \frac{n}{p_ip_j}, \cdots$
- Notice that
-
group - Non-empty set
-
Cosets, Normal SGs, Homomorphisms
- Let
$H \subset G$ , if$g \in G$ -
right coset -
$Hg = {hg: h \in H}$ -
left coset -
$gH = {gh : h \in H}$
-
right coset -
- If
$a, b \in G$ , then$Ha = Hb$ , iff$ab^{-1} \in H$ - Forward - if
$Ha = Hb$ , then$a = hb, h \in H$ , and$h = ab^{-1}$ - Reverse, if
$ab^{-1} \in H$ , then fix$h \in Ha$ , i.e$h = h'a$ , then$h=h'(ab^{-1})b \in Hb$ , if$h \in Hb$ ,$h = h'b$ , then$h'ba^{-1} \in H$ , and$hb \in Ha$
- Forward - if
- Similarly,
$aH = bH$ iff$a^{-1}b \in H$ - Forward - if
$aH = bH$ , then$b \in aH$ , and$b = ah$ , thus$h = a^{-1}b$ - Reverse -
$a^{-1}b \in H$ , then$h \in aH$ , then$h = ah'$ , set$h'' = b^{-1}ah'$ , and$h = bh'' \in bH$ , if$h \in bH$ , then$h = bh'$ ,$h'' =a^{-1}bh' \in H$ , and$ah'' = h \in aH$
- Forward - if
- Notice the set of right (or left) cosets partition
$G$ , under the equivalence relation$a \sim b \iff Ha = Hb$ - Notice
$G = \bigcup_{a \in G} aH$ , where each$|aH| = |H|$
- Notice
-
lagrange's theorem -
$|G| = [G : H]|H|$ , where$[G : H]$ is the number of equivalence classes under the above equivalence there are $|\langle a \rangle | | |G|$ - Any group of prime order have 2 sub grps. Itself and
$\langle 1 \rangle$ -
problems
- Show that
$a \sim b \iff ab^{-1} \in H$ ,- reflexivity -
$a \in G, aa^{-1} = 1 \in H$ - symmetric -
$a \sim b \rightarrow ab^{-1}\in H \rightarrow ba^{-1} \rightarrow b \sim a$ - Transitive -
$a \sim b \rightarrow b \sim c \rightarrow ab^{-1}, bc^{-1} \in H \rightarrow ac^{-1} \in H$
- reflexivity -
- ^^ equivalence class
$a \sim b \rightarrow ba^{-1} \in H \rightarrow ba^{-1}a = b \in Ha$ , i.e$a\sim b \rightarrow b \in Ha$ -
$aH \rightarrow Ha^{-1}$ is bijective, notice$|{Ha: a \in G}| = |{aH : a \in G}|$ (must prove map is injective)- Suppose
$a,b \in G$ , where$f(aH) = f(bH)$ , i.e$Ha^{-1} = Hb^{-1}$ , then$a^{-1}b \in H$ and$aH = bH$ (map is injective between equicardianl sets, so its bijective)
- Suppose
- If
$a_1 \in aH$ , then$a_1H = aH$ -> triv. by above thm
- Show that
-
Euler's Theorem
- If
$a, n \in \mathbb{Z}, (a, n) = 1$ , where$n \geq 2$ , then$a^{\phi(n)} \equiv 1 (n)$ - Consider
$\mathbb{Z}_n$ , then there are$\phi(n)$ units
- Consider
- If
-
Fermat's Little Theorem
- If
$p$ is prime, and$(a, p) = 1$ , then$a^{p -1} \equiv 1 (p)$ , (i.e consider a grp. of order$p$ ),$\phi(p) = p - 1$
- If
- Index is multiplicative
- If
$K \subset H \subset G$ , then$[K : G] = [K : H][H : G]$ - Notice
$|G| = |K|[K : G] = |H|[H : G]$ , and$|H| = [K : H]|K|$
- If
$HK = {hk : h \in H, K \in K}$ - If
$H \leq G, K \leq G$ , then$HK \leq G$ , iff$HK = KH$ , where$HK = \langle H \cup K \rangle$ - forward - Suppose
$HK$ is a group, then$g \in HK$ ,$g^{-1} = k^{-1}h^{-1} \in HK$ , i.e$k^{-1} \in H \rightarrow k \in H$ , and$k \in H$ , thus$KH \subset HK$ , the reverse follows similarly, and$HK = KH$ - Reverse
-
Closure - Suppose
$HK = KH$ , fix$g, g' \in HK$ , then$g = hk, g' = h'k', gg' = hh'kk' \in HK$ -
associativity - Follows directly from associativity in
$G$ - If
$hk \in HK$ , then$(hk)^{-1} = k^{-1}h^{-1} = h^{-1}k^{-1} \in HK$ (inverse)
-
Closure - Suppose
- forward - Suppose
- What of multiplication of co-sets, i.e
$aH \leq G$ ,$bH \leq G$ , then, when is$(aH)(bH) = abH$ - If
$H \leq G$ , and for all$c \in G, cHc^{-1} = H$ , i.e$cH = Hc$ iff$(aH)(bH) = abH$ - Forward - Suppose
$cH = Hc$ , then$a, b \in G$ ,$(aH)(bH) = (Ha)(bH) = (H)(abH) = (abH)$ (associativity) - Reverse - Suppose
$(aH)(bH) = abH$ , then$(aH)(a^{-1}H) = H$
- Forward - Suppose
- If
-
Normal Subgroups
-
$H \leq G$ , the$H$ is normal if$cHc^{-1} \subset H, \forall c \in G$ $cH = Hc, \forall c \in G$
- Thus if
$H$ is normal, then$\forall c \in G, cHc^{-1} = H$ , then the cosets$G / H$ , form a group under$(aH)(bH) = abH$
-
-
Group Homomorphisms
- Let
$G, H$ be groups, then$f : G \rightarrow H$ , is a homo-morphism if,$f(ab) = f(a)f(b)$ - Notice,
$f(1) = f(1 * 1) = f(1)f(1)$ (cancellation follows to get$f(1) = 1_H$ ) -
$f(a^{-1}) = f(a)^{-1}$ , i.e$f(1) = 1_H = f(a)f(a^{-1})$
- Notice,
-
kernel - The kernel (null-space) of
$f$ is defined as$a \in G, f(a) = 1_H$ , then$ker(f)$ is a normal sub-grp of$G$ - notice
$a, b \in ker(f), then f(ab) = f(a)f(b) = 1_H$ , and$ab \in ker(f)$ - let
$H = ker(f)$ , fix$c \in G$ , then$h \in cHc, f(h) = f(a)1_Hf(a)^{-1} = 1_H$ , thus$cHc^{-1} \subseteq H$
- notice
-
natural map - Let
$f : G \rightarrow G / N$ , be the map where$a \in G, f(a) = aN$ , then for$a \in N, f(a) = aN = N$ , i.e$ker(f) = N$ - Notice
$f$ is a homo-morphism,$f(ab) = abN = (aN)(bN)$ ($N$ is normal)
- Notice
-
$f$ is injective, iff the kernal,$N$ is trivial, i.e${1}$ - Forward - Suppose that
$f$ is injective, then for$g \in N$ ,$f(g) = 1_H$ , naturally,$g = 1 \in N$ - Suppose that the kernel of
$f$ ,$N$ is trivial, then for$g, h \in G, f(g) = f(h), g - h \in N$ , and$g - h = 0$ , thus$h = g$
- Forward - Suppose that
-
$f : G \rightarrow H$ is a homomorphism- Suppose
$K \leq G$ , then$f(K) \leq H$ , fix$f(g), f(h) \in f(K)$ , then$f(gh) \in H$ (closure)- associativity holds, identity holds, etc.
- If
$f$ is an epi-morphism, and$K$ is normal, then$f(K)$ is also normal- Suppose that
$K \leq G$ is normal, and$f$ is an epi-morphism, that is for all$h \in H, \exists g \in G, f(g) = h$ , consider$h \in H$ , then$hf(K)h^{-1} = f(g)f(K)f(g)^{-1} = f(gKg^{-1}) \subset f(K)$ , and$f(K)$ is normal
- Suppose that
- If
$K \leq H$ , then$f^{-1}(K) \leq G$ , if$K$ is normal so is$f^{-1}(K)$ - Suppose
$K \leq H$ , fix$a, b \in f^{-1}(K)$ , then$f(a)f(b) = f(ab) \in f(K)$ , and$ab \in f^{-1}(K)$ , (identity -> triv), associative triv, fix$a = f(g) \in K, a^{-1} = f(g^{-1}) \in f(K)$ ($f^{-1}(K)$) is a grp. - If
$K$ is normal, then for all$c \in H, cKc^{-1} \subset K$ , i.e$g \in cKc^{-1}, g = ckc^{-1}$ , in which
- Suppose
- Suppose
- Let
-
problems
- Suppose
$aH$ is a left-coset of$G$ , and$a_1 \in H$ , then$a^{-1}a_1 \in H$ -
$a \in H, a^{-1} \in H \rightarrow a^{-1}a_1 \in H$ , thus$aH = a_1H$
-
- If
$[G : H] = 2$ , then$H$ is normal- Let
$g \in G/N$ , then$g^{-1} = g$ , thus$gH = (gH)^{-1}$ , in other, words$gH = Hg^{-1} = Hg$ , and$H$ is normal
- Let
- Let
$f : \mathbb{Z} \rightarrow \mathbb{Z}$ is an endo-morphism, show that$f$ is determined by it's action on $1- Notice,
$\mathbb{Z} = \langle 1 \rangle$ , thus for$h \in \mathbb{Z}, h = 1 + 1 + \cdots + 1$ , and$f(h) = hf(1)$
- Notice,
- If
$f$ is an automorphism of$\mathbb{Z}$ , show that$f$ is either$I$ or$-I$ - Notice, since
$f$ is an isomorphism,$f = k\mathbb{Z}$ for some$k \in \mathbb{Z}$ , suppose$|k| \not = 1$ , then, for$k -1 \in \mathbb{Z}$ ,$k -1 \not \in f(\mathbb{Z})$ (a contradiction), thus$|k| = 1$ , and$f = I \lor -I$
- Notice, since
- Grp. of AMs of
$\mathbb{Z}$ is a grp. of order$2$ -
$H, K \leq G$ , then for$x, y \in G$ ,$x \sim y$ iff$x = hyk, h \in H, k \in K$ , so that$\sim$ is an equiv.- Reflexivity -
$x \in G$ ,$1_Hx1_K = x$ , this$x \sim x$ - Symmetricity -
$x \sim y$ , then$x = hyk, h \in H, k \in K$ , then$y = h^{-1}xk^{-1}$ - Transitivity -
$x \sim y, y \sim z$ , then$x = hyk$ ,$y = h'zk'$ , then$x = hh'zk'k$ , thus$x \sim z$
- Reflexivity -
- ^^ above equivalence class partitions
$G$ , i.e$HxK = {hxk : h \in H, k \in K}$ (equivalence class of$x$ ), show that any double-coset can be written as a union of right cosets of$H$ , or a union of left cosets of$K$ -
- fix
$x \in G$ , then$HxK = \cup_{k \in K} Hxk$
- fix
-
- triv same as above
-
- Suppose
- Let
-
Isomorphism Theorems
-
Suppose
$N$ is a normal subgrp. of$N$ , let$f : G \rightarrow H$ , and$\pi : G \rightarrow G/N$ -
Want to find
$\overline{f} : G/N \rightarrow H$ , where$f(aN) = a$ - This makes diagram commutative
-
Then set,
$\overline{f} = f, for k \not \in K$ , and for$k \in K, \overline{f} = 0$ -
factor theorem
- A HM
$f$ , where$ker(f) = K \supset N$ , can be factored through$N$ , i.e there is a unique homo-morphism$\overline{f} : G/N \rightarrow H$ , such that for$\overline{f} \circ \pi = f$ -
$\overline{F}$ is an epi-morphism iff$f$ is an epi-morphism -
$\overline{f}$ is a mono-morphism iff$K = N$ -
$\overline{f}$ is an isomorphism iff$f$ is an epi-morphism and$K = N$
-
- Proof
- Existence - Set
$\overline{f}(aN) = f(a)$ - For
$aN, bN \in G/N$ , notice,$\overline{f}(aNbN) = f(abN) = f(ab) = f(a)f(b) = \overline{f}(aN)\overline{f}(bN)$ -
$aN = bN$ , then$a^{-1}b \in N$ , and$f(a^{-1}b) = 1, f(a) = f(b)$
- For
-
$\overline{f}$ is an epi-morphism iff$f$ is an epi-morphism- epimorphism
$\iff$ surjective + homomorphism - Follows directly..
- epimorphism
-
$\overline{f}$ is a monomorphism iff$N = K$ - Forward - Suppose
$\overline{f}$ is a mono-morphism, in which case$ker(\overline{f}) = 1N$ , and for$k \in K$ , consider$\overline{f}(kN) = f(k) = 0$ , as such,$kN = K$ , and$k \in K$ , thus$N \subset K$ - Reverse - Suppose
$N = K$ , and$f(aN) = f(bN)$ , then$\overline{f}(ab^{-1}N) = 1$ , thus$ab^{-1} \in N$ , and$a \sim b$ , thus$aN = bN$
- Forward - Suppose
-
$\overline{f}$ is an isomorphism iff$f$ is an EM and$K = M$ - Reverse - Triv, i.e
$\overline{f}$ is EM, and$\overline{f}$ is monomorphism= - Forward - Suppose
$\overline{f}$ is isomorphism, then$\overline{f}$ is EM + MM
- Existence - Set
- A HM
-
First Isomorphism Theorem
- If
$f: G \rightarrow H$ is a homomorphism with kernel$K$ , then the image of$f$ is isomorphic to$G/K$ - I.e consider
$\overline{f} : G/K \rightarrow im(f)$ , notice$\overline{f}$ is a MM by above, and for$h \in im(f)$ ,$f(g) = h$ , then$\overline{f}(fK) = h$ ($\overline{f}$ ) is an epi-morphism
- I.e consider
- If
-
Let
$H, N \leq G$ , where$N \leq G$ is normal-
$HN = NH$ , thus$HN \leq G$ - Notice
$N$ is normal, thus for$l \in HN, l = hN, h \in H$ , as such$l \in NH$ , thus$HN \subseteq NH$ ..
- Notice
-
$N \leq HN$ is normal in$H$ - Fix
$h \in HN\backslash N$ , notice$h \in G$ , thus$gN = Ng$ , thus$N$ is normal
- Fix
-
$H \cap N \leq H$ is normal
-
-
Second Isomorphism Theorem
- If
$H, N \leq G$ , where$N$ is normal,$H/(H \cap N) \cong HN/N$ - Consider
$\pi : G \rightarrow G/N$ , then consider$\pi' = \pi|_H : H \rightarrow HN / N$ , then$ker(\pi') = H \cap N$ , thus (by factor thm),$\pi'' : H / (H \cap N) \rightarrow HN/N$
- Consider
- If
-
Third Isomorphism Theorem
- If
$N, H \leq G$ , where$H, N$ are normal, and$N \leq H \leq G$ , then$G/H \cong (G/N)/(H/N)$ - WTF -
$f: G/N \rightarrow G/H$ where$ker(f) = H/N$ , and$im(f) = H/N$ (i.e epi-morphism) w/ kernel$H/N$ -
$H/N \leq G/N$ (is it normal)? Yes, consider$hN \in H/N, gN \in g/N$ , then$hNgN = gNhN$ , i.e$gN/N = H/Ng$ ($H/N$ is normal)
-
- Natural iso-morphism follows, i.e
$gN \in G/N, g(gN) = gH$ , thus for$hN \in H/N, f(hN) = f(h)f(N) \in H$ , (epi-morphism?)- Yes, thus
$(G/N)/(H/N) \cong G/H$
- Yes, thus
- WTF -
- If
-
Consider
$N \leq H \leq G$ , where$N$ is normal, then consider the map$\psi(H) : 2^G \rightarrow 2^{G/N}$ , where$\psi(H) = H/N$ ,- Notice,
$\psi$ is a bijection, i.e for$H/N \subset G/N$ ,$\psi(H) = H/N$ EM - For MM, suppose
$H_1, H_2 \leq G$ , and$\psi(H_1) = \psi(H_2), H_1/N = H_2/N$ , thus$\forall h_1 \in H, \exists, h_2 \in H_2, h_1N = h_2N$ , and$h_2^{-1}h_1 \in N \subset H_2$ , and$h_2\cdot h_2^{-1}h_1 = h_1 \in H_2$ , and$H_1 \subseteq H_2$ (reverse follows easily), thus$H_2 = H_1$
- Notice,
-
Correspondence Theorem
- Suppose
$N \leq G$ ($N$ is normal), then$\psi : H \rightarrow H/N$ is a OTO correspondence between subgrps. of$H \leq G$ , where$N \leq G$ - The inverse
$\psi^{-1} = \tau : Q \rightarrow \pi^{-1}(Q)$ , where$\pi : G \rightarrow G/N$ -
$H_1 \leq H_2$ iff$H_1 / N \leq H_2/N$ and$[H_2 : H_1] = [H_2/N : H_1/N]$ -
$H$ is a normal subgrp. of$G$ iff$H/N$ is a normal subgrp. of$G/N$ -
$H_1$ is a normal subgrp. of$H_2$ iff$H_1/N$ is a NSG of$H_2/N$ , and BY 3IT$H_2/H_1 \cong (H_2/N)/(H_1/N)$
-
- The inverse
- Proof (ii)
- See above proof for bijection, for inverse
$\psi^{-1}$ , consider$\psi^{-1}(H/N) = {a \in G: \pi(a) = aN, aN \in H/N}$ ($\pi$ is an isomorphism) - Forward - Suppose
$H_1 \leq H_2$ ,$\psi(H_1) \subset \psi(H_2)$ - Reverse - Suppose
$H_1/N \leq H_2/N$ $\psi^{-1}$ is a bijection -
$[H_2 : H_1] = [H_2/N : H_1/N]$ - Suppose
$a, b \in H_2$ , and$a \sim b$ ($a^{-1}b \in H_1$ ), then for$aN, bN \in H_2/N$ ,$a^{-1}bN \in H_1/N$ , and$aN \sim bN$ , thus$[H_2 : H_1] = [H_2/N : H_1/N]$
- Suppose
- See above proof for bijection, for inverse
- Proof (iii)
- Forward -
$H \leq G$ is NSG of$G$ , consider$g \in G$ , notice$(gN)(H/N)(gN)^{-1} = (gHg^{-1})/N = H/N$ , and$H/m \leq G/N$ is normal - Reverse - Suppose
$H/N \leq G/N$ is normal
- Forward -
- Suppose
-
problems
- Consider
$n\mathbb{Z} \leq \mathbb{Z}$ , show that$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$ - for
$kn\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z}$ , fix$\phi(kn\mathbb{Z}) = k (n)$ , MM if$\phi(kn\mathbb{Z}) = \phi(k'n\mathbb{Z})$ , then$k = k' + mn (n) = k'$ , and$k = k'$ , surjectivity, for$k \in \mathbb{Z}_n$ , take$\phi(k\mathbb{Z}) = k$ , and$\phi$ is surjective
- for
- If
$m | n$ , then$\mathbb{Z}_m \leq \mathbb{Z}_n$ , show that $\mathbb{Z}_n / \mathbb{Z}m \cong \mathbb{Z}{n/m}$- Suppose
$m | n$ , then there is a sub-grp of $\mathbb{Z}n$, i.e $\langle 1^m \rangle$ of order $n/m$, and $\langle 1^{n/m} \rangle$ of order $m$ (thus $\mathbb{Z}{n/m} \cong \mathbb{Z}_m$), thus $n/m = [\mathbb{Z}n : \langle 1^{n/m} \rangle]$, and $\mathbb{Z} / \langle 1^{n/m} \rangle \cong \mathbb{Z}{n/m}$, and$\langle 1^{n/m} \rangle \cong \mathbb{Z}_m$
- Suppose
- Let
$a \in G$ , and$f_a : G \rightarrow G$ represents conjugation by$a$ , i.e$f(x) = axa^{-1}$ - MM, fix
$x, y \in G$ , then$f(x) = f(y) \rightarrow axa^{-1} = aya^{-1} \rightarrow x = y$ - EM, fix
$g \in G$ , then$f(aga^{-1}) = g$ -
$f_a$ is defined as an inner AM
- MM, fix
- Denote
$Z(G)$ (the center) of$G$ , where$x \in G \iff \forall y \in G xy = yx$ , then$Z(G)$ is normal, and$G/Z(G) \cong$ The grp. of inner AMs of$G$ - Denote
$H$ the set of all$f_a(x) = axa^{-1}$ under comp,$f, g \in G, fg = f(g(x)) = baxa^{-1}b^{-1}$ - inverse, i.e
$f^{-1} = f_{a^{-1}}$
- inverse, i.e
- WTS:
$\phi : G \rightarrow H$ , where$ker(\phi) = Z(G)$ , i.e$1_H = f_1$ ,$im(f) = H$ , notice the map$\phi(z) = f_z$ satisfies criteria, i.e$z \in Z(G), \phi(z) = f_z, \forall x \in G, f_z(x) = zxz^{-1} = xzz^{-1} = x$ , and$f_1 = f_z$ - Apply FIT
- Denote
- If
$f$ is an AM of$\mathbb{Z}_n$ , show that$f$ is multiplication by$m$ where$(m,n) = 1$ - Suppose
$f$ automorphism of$\mathbb{Z}_n$ , notice,$\langle 1 \rangle = \mathbb{Z}_n$ , then$f(1) = k$ , suppose$(k, n) = d$ ,$n = cd$ , and for$l \in \mathbb{Z}_n, l = 1^{n/d}, f(l) = kl = 1^{c'd}1^{n/d} = 0$ , thus$d = 1$
- Suppose
- Let
$H, N \leq G$ , show that$HN$ is the smallest grp. where$H \leq HN, N \leq HN$ - Let
$g$ be an AM of$G$ , and$f_a$ an IAM, then$g \circ f_a \circ g^{-1}$ is an IA, and the grp. of IAMs is a normal sub grp. of the AMs of$G$ - Identify a large class of grps. for which the only IM is the identity mapping
- Abelian grps.
- Consider
-
-
Direct Products
- Consider groups
$H, K$ , let$G = H \times K$ , where the group operations are defined component wise, i.e$(h_1, k_1), (h_2, k_2) \in H \times K$ , then$(h_1h_2, k_1k_2) \in H \times K$ - Above grp. is denoted external direct product of
$H, K$
- Above grp. is denoted external direct product of
- Consider
$H \cong \overline{H} = {(h, 1_k) : h \in H}$ , notice$\overline{H}, \overline{K}$ are normal sub-grps, of$H \times K$ - If
$G = HK$ , and$H \cap K = {1}$ , then$G$ is the internal direct product of$H, K$ , i.e$HK \cong H \times K$ - If
$G$ is the internal direct product of$HK$ , then$G \cong H \times K$ - i.e consider
$g \in G = HK, g = hk$ ,$\phi : G \rightarrow H \times K$ , then$\phi(g) = (h,k)$ , naturally$\phi$ is a mono-morphism, then fix$(h, k) \in H \times K$ , then$h = hk$ is the pre-image, and$\phi$ is an EM
- i.e consider
- If
- Consider
$H_1, \cdots, H_n$ , then the EDP of$H_i$ ,$\Pi_i H_i$ is the analogous grp. defined above- The analogous normal subgrps of the EDP are also defined as above
- Fix
$g \in G$ , where$g = h_1 \cdots h_n, h_i \in H_i$ , where$(h_i)$ are unique, i.e$\bigcap_i H_i = 1$ - and
$H_i$ are normal, then$G$ is the IDP of the grps. i.e$G = H_1\cdots H_n$
- and
- Suppose
$G = H_1\cdots H_n$ , where$H_i$ is normal. The following are equiv.-
$G$ is the IDP of$H_i$ $H_i \bigcap \Pi_{j\not=i}H_j = {1}$ $H_i \bigcap_{j = 1}^{i - 1} H_j = {1}$
-
- Consider groups
-
Rings
- Let
$R$ be a ring- Abelian grp. under
$+$ - and associative + distributive multiplication
$(a, b) \rightarrow ab$ , where$a(bc) = (ab)c$ , and$a(b + c) = ab + ac$ -
$R$ has-
$1_R$ - a multiplicative identity -
$0_R$ - an additive identity
-
- Abelian grp. under
- Suppose
$a, b, c \in R$ , then$a0 = a(0 + 0) = a0 + a0 \rightarrow a0 = 0$ $(-a)b = (0 - a)b = 0 - ab = -(ab)$ -
$(-1)(-1)$ (apply above w/$a = 1, b = -1$ )
- Suppose
$a, b \in R \backslash {0}$ , but$ab = 0$ then$a,b$ are zero-divisors - If
$a \in R$ , where there exists$b \in R$ , s.t$ab = ba = 1$ , then$a$ is a unit or is invertible in$R$ - If
$\forall a,b \in R, ab = ba$ , then$R$ is a commutative ring - Integral Domain - Commutative Ring w/ no zero-divisors
-
Division Ring - non-zero elements form grp. under mult. i.e
$a\in R \backslash {0}$ ,$\exists b \in R \backslash { 0}, ab = 1$ - field - Commutative division ring
- Any FID is a field
- Let
$R$ be an FID, then fix$f : R \rightarrow R$ , where$f(x) = ax$ , notice, if$ax = bx \rightarrow (a - b)x = 0$ , thus$a - b = 0$ , and$FID$ is injective, i.e$\forall a \in R \backslash {0}$ , the map is injective, thus$\exists b \in R \backslash {0}, ab = 1$ ...
- Let
- The characteristic of a ring
$R$ - The smallest number
$n$ , where$1 + \cdots (n-times) + 1 = 0$ - If this DNE, then the characteristic of
$R$ is 0
- The smallest number
- If
$R$ is an integral domain, and$char(R) \not= 0$ , then char(R)$ must be a prime number- Let
$char(R) = n = ab \in R$ , then$ab = 0$ , and are zero-divisors a contradiction
- Let
-
sub-ring -
$R' \subset R$ is a sub-ring if$R'$ itself is a ring, i.e$0_R, 1_R \in R'$ -
examples
-
$\mathbb{Z}$ - is a ring + an ID (i.e no zero-divisors) -
$\mathbb{Z}_n$ - is a ring, if$n$ is prime it is a FID, otherwise, it is not an ID -
$M_n(R), n \geq 2$ - the set of$n \times n$ matrices is a ring, it is not a division ring under composition (matrix-multiplication), and has zero-divisors, i.e$T : V \rightarrow V$ , where$T(c) = w$ , and$S(v) = v - w$ -
Quaternions
- Define
$H$ a vector space over$\mathbb{Z}$ , with basis vectors$1, i, j, k$ , and multiplication-
$i^2 = j^2 = k^2 = -1$ ,$ij = k, jk = i, ki = j$ ,$ji = -ij$ ,$kj = -jk$ ,$ik = -ki$
-
- Quaternions are division ring
- Define
-
$R$ is a ring,$R[X]$ set of all poly. in$X$ , is a ring
-
-
$R[X_1 \cdots X_n]$ is defined as the set of polynomials in$R$ over variables$X_1, \cdots, X_n \in R$ , notice,$A[X] = \Sigma_k a_k x^k, B[X] = \Sigma_k b_k x^k$ , then$A[X] \cdot B[X] = \Sigma_k \Sigma_{0 \leq i \leq k} a_i b_{k - 1} x^k$ - Define
$R[[X]]$ as the set of formal power series, i.e where$\Sigma f(n) x^n$ - If
$R$ is an integral domain, then$R[X]$ is also an integral domain. Fix$A, B \in R[X] \backslash {0}$ , consider$a_j \not = 0$ the smallest such coeff. in$A$ , and analogously$b_i$ , notice then$ab_{j + i} \geq a_jb_i \not = 0$ -
problems
- If
$R$ is a field, is$R[X]$ a field?- Notice, for
$f, g \in R[X]$ , if$fg = 1$ , then$deg(fg) = deg(f) + deg(g) = 0$ , and$deg(f) = deg(g) = 0$ , thus$f, g$ are both the identity - Notice, if
$f \in R[X]$ ,$f(X) = a_0 + a_i x^i$ , $
- Notice, for
- If
$R$ is a field, what are the units of$R[X]$ -
$f \in R[X], f(X) = a \in R$ (invertible)
-
- Let
$\mathbb{Z}[i]$ be the ring of Guassian integers,$a + bi$ where$a, b \in \mathbb{Z}$ , show that$\mathbb{Z}[i]$ is an integral domain and not a field- ID - Fix
$z, z' \in \mathbb{Z}[i]$ , where$z = a + bi, z' = a' + b'i$ , then$zz' = aa' - bb' + (ab' + ba')i$ , then once can sole$aa' = bb', ab' = - b'a$ to obtain that$a = 0, b = 0$ , thus$z = 0$ , and$\mathbb{Z}[i]$ is an integral domain- Easier proof using norm, i.e
$z, z' \in \mathbb{Z}[i]$ , where$z, z' \not = 0, |z| > 0, |z'| > 0 \in \mathbb{Z}$ , i.e norm$|z| = a^2 + b^2 \in \mathbb{Z}$ , thus for$zz' = 0, |z||z'| = 0$ , and either$|z| = 0, |z'| = 0$ (contradiction)
- Easier proof using norm, i.e
- ID - Fix
-
$\mathbb{Z}[i]$ is not a field- Similar logic - If
$z \in \mathbb{Z}[i]$ , then$1 = |zz^{-1}| = |z||z^{-1}|$ , but$z \in \mathbb{Z}$ is not guaranteed to exist..
- Similar logic - If
- Units,
$z \in \mathbb{Z}, |z| | 1$ (i.e norm is a unit of$\mathbb{Z}$ ) - Set of Endomorphisms of
$G$ ,$End(G)$ is a ring- I.e fix
$f, g \in End(G)$ , then$f + g \in End(G)$ , i.e$End(G)$ is abelian under addition (if$G$ is as well), for multiplication, consider$f_1 \in End(G), f_1(x) = x$ (identity mapping), then$f \circ(g_1 + g_2) (x) = f(g_1(x) + g_2(x)) = f(g_1(x)) + f(g_2(x))$ distributes
- I.e fix
- What are units of
$End(G)$ (functions for which$f^{-1}$ exists), i.e injective (thus bijective) mappings, otherwise$f(x_1) = f(x_2) = x$ , and$f^{-1}(x ) = x_1 = x_2$ ?
- If
- Let
-
Ideals, Homomorphisms, and Quotient Rings
- Let
$f : R \rightarrow S$ , where$R, S$ are rings, and$f$ is homo-morphic over the abelian grps$(R, +), (S, +)$ - What abt.
$a, b \in R, f(ab) = f(a)f(b)$ ? - What abt.
$f(1_R) = 1_S$ , notice$f(1_R) = f(1_R)f(1_R)$ (however,$f(1_R)$ may not be a unit, thus cannot cancel..)
- What abt.
-
ring homomorphism - Map
$f : R \rightarrow S$ , where$a, b \in R, f(ab) = f(a)f(b), f(a + b) = f(a) + f(b), f(1_R) = 1_S$ - To prove similar isomorphism theorems for rings (notice grps -> normal subgrps, rings -> ideals)
-
Ideal
- Let
$I \subset R$ , where-
$I \leq R$ , under$+$
-
- If
$a \in I$ , then$ra \in I$ , i.e$rI \subset I, \forall r \in R$ (left ideal) - If
$a\in I$ , then$ar \in I$ , i.e$Ir \subset I, \forall r \in R$ (right ideal)
- Let
- Consider
$ker(f)$ , notice if$a, b \in ker(f), then f(a + b) = f(a) + f(b) = 0 +0 = 0$ ,$r \in R, f(ar) = f(a)f(r) = 0 * f(r) = 0$ , (right ideal)- Two sided ideal comes naturally, and
$ker(f)$ is a two-sided ideal - If
$ker(f) = R$ , then$f(1_R) = 0_S$ (contradiction)
- Two sided ideal comes naturally, and
-
Quotient Rings
- Let
$I \subset R$ ,$I$ is an ideal, notice$(I, +) \leq (R, +)$ , and$R/I$ is the set of cosets of$I$ in$R$ - Suppose
$r + I, s + I \in R/I$ , then$(r + I)(s + I) = rs + rI + sI + I = rs + I$ ,- Notice, if
$r \sim r', s \sim s'$ , i.e$r' - r, s' - s \in I$ , then let$a = r' - r, b = s' - s \in I$ , then$r's' = (r + a)(s + b) = rs + I$ , and$r's' \in rs + I$ , thus$r's' \sim rs$ (operations are well-defined over eq. class)
- Notice, if
- Thus cosets of
$I$ in$R$ form a ring,$R/I$ (the quotient ring)- Identity under mult/
$1_R + I \in R/I$ , where$(r + I)(1_R + I) = r + I$ - Identity under addition.
$0_R + I = I \in R/I$
- Identity under mult/
- Every proper ideal
$I$ is the kernel of a ring HM- Let
$I \subset R$ be an ideal, consider$f : R \rightarrow R/I$ , where $r \in R,$f(r) = r + I \in R/I$ , naturally,$r \in I, f(r) = I = 0_{R/I}$ , fix$ab \in R, f(ab) = ab + I = (a + I)(b + I) = f(a )f(b)$
- Let
- Suppose
$f : R \rightarrow S$ , where the only ideals of$R$ , are$R, {0_R}$ , then$f$ is injective- For any division ring
$R$ , the hyp. is satisfied (i.e if$I \subset R$ is ideal, then$I = R$ )- Let
$r \in I$ , then$r^{-1} \in R, r^{-1}r = 1_r \in I$ , and$I = R$
- Let
- Notice
$ker(f) = I \subset R$ , is an ideal, thus if$ker(f) = R$ ,$f(1_R) = 0_S$ (a contradiction), thus$ker(f) = {0}$ , and$f$ is injective
- For any division ring
- Let
$X \subset R$ , then$\langle X \rangle$ is the two-sided ideal generated by$R$ , i.e$\langle X \rangle = RXR$ -
principal ideal - Ideal generated by single element
$I \subset R$ ,$I = \langle r \rangle, r \in R$ - Addition of ideals,
$I, J \subset R, I + J = {i + j, i,j \in R}$ - fix
$a, b \in I + J, a = i + j, b = i' + j', a + b = i + i' \in I + j + j' \in J, a + b \in I + J$ , inverse$a = i + j, -a = -i -j$ $a = i + j \in I + J, r \in R, ra = ri + rj \in I + J$
- fix
- Let
-
problems
- What are ideals in
$\mathbb{Z}$ , notice$\mathbb{Z}$ is a PID, thus$I \subset \mathbb{Z}$ ,$I = k\mathbb{Z} = \langle k \rangle$ -
$M_n(R)$ ring of$n \times n$ matrices over$R$ , let$C_k \subset M_n(R)$ be the subset of$M_n(R)$ of zero-matrices except for column$k$ , similarly for$R_k$ (rows), show that$C_k, R_k$ are left (resp. right) ideals- Notice
$C_k$ is an abelian grp. under matrix addition, consider$c \in C_k, m \in M_n(R)$ , notice$ab_{i,j} = \Sigma_{1 \leq k \leq n} a_{i, k}b_{k, j}$ , thus$a_{i, k} \not = 0$ , where$i = k$ , and$ab_{c,d} = 0, c \not= k$ - Similar case follows for
$R_k$ (notice,$b_{kl}$ comes from left-side matrix)
- Notice
- In
$R[X]$ , express the set$I$ if poly. with no constant term i.e$a_i = 0$ , show that$I$ is a principal ideal,- Notice,
$I = \langle x \rangle$ , fix$f \in I, f = a_1x + a_2x^2 + \cdots$ , then fix$p (x) \in R[X], p = a_1 + a_2x + \cdots, xp(x) = f$
- Notice,
- Let
$R$ be a commutative ring whose only proper ideals are${0}$ , and$R$ , show$R$ is a field- fix
$a \in R$ , consider$\langle a \rangle = R$ , then$1 \in \langle a \rangle$ , thus$\exists b \in R, ba = ab = 1$ , and$R$ is a field
- fix
- Let
$R = \mathbb{Z}_n$ , where$n$ is prime or composite, show that every ideal of$R$ is principal- fix
$I \subset R$ , where$i = (a_1, \cdots a_n)$ , then consider$b = gcd(a_1, \cdots, a_n)$ , thus for$a \in I, \exists c \in R cb = a$ , and$I = \langle a \rangle$
- fix
- What are ideals in
- Let
-
Isomorphism Thm s for rings
- WTS similar factor thms for rings as for grps. ie
$f : R \rightarrow S$ ,$\pi : R \rightarrow R/I$ ,$I = ker(f)$ - Any ring HM,
$f$ can be factored through ideal$I \subset ker(f)$ ,-
$\overline{f} : R/I \rightarrow S$ is EM iff$f$ is EM -
$\overline{f}$ is MM iff$ker(f) = I$
-
- Proof
- Suppose
$f : R \rightarrow S$ ($f$ is HM), where$I \subset ker(f)$ , and$\pi : R \rightarrow R/I$ , and$\overline{f} : R / I \rightarrow S$ , where$\overline{f}(r + I) = f(r)$ -
Prove that
$\overline{f}$ is well defined - Fix$a \sim b$ , then$a - b \in I$ , and$f(a - b) = f(a) - f(b) = 0$ , thus$f(a) = f(b), f(a + I) = f(a) = f(b) = f(b + I)$ -
$\overline{f}$ is HM, fix$(a + I), (b + I) \in R/I, f((a + I) + (b + I)) = f(a + b + I) = f(a + b ) = f(a) + f(b) = f(a + I) + f(b + I)$ ,$f((a + I)(b + I)) = f(ab) = f(a)f(b) = f(a + I)f(b + I)$ ... - Forward - Suppose
$\overline{f}$ is EM, fix$s \in S$ , then$\overline{f}(a + I) = s = f(a)$ , thus$a \in R$ is PM of$s$ , and$f$ is EM - Reverse - Suppose
$f$ is EM, then for$s \in S, \exists a \in R, f(a) = s$ , and$f(a + I) = s, a + I \in R/I$ , and$\overline{f}$ is EM - Reverse - Suppose
$ker(f) = I$ , then if$\overline{f}(a + I) = \overline{f}(b + I)$ , then$f(a) = f(b)$ , and$a -b \in I$ , thus$a\sim b \rightarrow a + I = b + I$ - Forward - Suppose
$\overline{f}$ is MM, WTS$ker(f) \subset I$ , fix$x \in ker(f)$ , then$f(x) =0$ , and$\overline{f}(x + I) = 0 = f(0_R + I)$ , thus$x \in I$
-
Prove that
- Suppose
-
First ITM For Rings
- If
$f : R \rightarrow S$ is a RHM, where$ker(f) = K$ , then$im(f) \cong R/K$ -
$f$ is EM onto$im(f)$ , and consider factor thm. with$f : R \rightarrow im(f)$ , with$I = R/ker(f)$ , then$f : R/K \rightarrow im(f)$ is IM, thus$R/K \cong im(f)$
-
- If
-
Second ITM For Rings
- Let
$I \subset R$ be an ideal of$R$ , and$S \subset R$ , a sub-ring, then - Proofs
- Notice,
$0_R, 1_R \in S + I$ (naturally grp. is closed under addition ), wb mult$x + y, x' + y' \in S + I$ , then$(x + y)(x' + y') = xx' + xy' + yx' + yy'$ , where$xx' \in S, xy' + yx' + yy' \in I$ ($I$ is two-sided ) -
$I \subset S + I$ is ideal.. triv. -
$S \cap I \subset S$ is ideal- Fix
$a, b \in S \cap I$ , then$a + b \in S \cap a + b \in I$ .. triv.
- Fix
- Consider
$\pi : S + I \rightarrow S$ , where$\pi(a) = 0 \iff a \in I$ , then$(S + I)/ker(\pi) = (S + I)/I \cong im(\pi) \cong S /(S \cap U)$
- Notice,
- Let
-
Third ITM For Rings
- Let
$I, J \subset R$ , where$I \subset J$ , then$J / I$ is an ideal of$R / I$ and$R/J \cong (R/I)/(J/I)$ - Notice
$J / I \subset R / I$ is an ideal .. follows naturally
- Notice
- Consider the map
$\pi : R / I \rightarrow R / J$ , where$\pi(a + I) = a + J$ , as such$ker(\pi) = J / I \subset R/I$ - For EM, fix
$a + J \in R / J$ ,$a + I \in R / I$ ,$\pi(a + I) = a + J$
- For EM, fix
-
$\pi$ is well defined?- Suppose
$a + I, b + I \in R/I$ , where$a + I = b + I$ , thus$a - b \in I$ , then$\pi(a + I) = \pi (b + b - a + I) = \pi(b + I)$
- Suppose
- Let
-
Corresponence Thm. for Rings
-
$I \subset R$ is an ideal, then$S \rightarrow S / I$ is a OTO correspondence between all subrings of$R$ , a subset of$2^R$ containing$I$ , and the set of all sub-rings of$R/I$ . Analogously the set,${J \subset R: I \subset J}$ (where$J$ is an ideal), and the set of all ideals of$R/I$ - Apply the correspondence thm for grps. where
$I \subset S \subset R$ ,$S \rightarrow R/I$ is OTO (now must show that$S/I \subset R/I$ ) is a sub-ring, and ideals to ideals - If
$S \subset R$ is a sub-ring, then$S/I \subset R/I$ is a sub-ring? If$S \subset R$ is a ring, then$S/I \subset R/I$ is also a sub-ring- ..
- Apply the correspondence thm for grps. where
-
-
CHINESE REMAINDER THEOREM
- If
$a, b \in R$ , then$a \cong b (I)$ , if$a + I = b + I$ , i.e$a -b \in I$ and$a \sim_I b$ - i.e
$a \cong b (n)$ , iff$a - b \in n\mathbb{Z}$
- i.e
- If
$a, b$ are relatively prime in$R$ , then$\exists s, t \in R, as + bt = 1$ , i.e$1_R$ is expressible as a lin. comb of$a, b$ , and$1_R \in I + J$ , thus$I + J = R$ - Notice if
$I_{n_i}$ is$\langle n_i \rangle \subset R$ , then$\bigcap I_{n_i} = \langle lcm(n_1, \cdots n_n) \rangle$ , i.e if$n_i, n_j$ are relatively prime, then$\bigcap_i I_{n_I} = \langle n_1 \cdots n_n \rangle$ -
$R_1, \cdots, R_n$ are rings, then$R_1 \times \cdots \times R_n$ is the set of$(a_1, \cdots, a_n)$ under component wise operations (think of dir. product of grps.) -
thm
- Let
$R$ be a ring, and$I_1, \cdots, I_n$ be ideals in$R$ that are relatively prime in pairs, i.e$\forall i, j, i \not= j, I_i + I_j = R$ - If
$a_1 = 1$ , and$a_j = 0$ , for$j = 2, \cdots, n$ , there is$a \in R$ , where$a \cong a_i (I_i)$ for all$i = 1, \cdots, n$ - More generally, if
$a_1, \cdots, a_n \in R$ ,$\exists a \in R, a \equiv a_I (I_i)$ - If
$b \in R$ , where$b \equiv a_i (I_i)$ then$b \equiv a (\cap_i I_i)$ . Conversely if$b \equiv a (\cap_I I_i)$ , then$b \equiv a_i (I_i)$ $R/(\bigcap_i I_i) \cong \Pi_i R/I_i$
- If
- Proofs
- Fix
$I_i$ , then for each$I_j \not= i$ , there exist$b_{j} \in I_i, c_j \in I_j, b_j + c_j = 1$ ($I_i, I_j$ are relatively prime), thus consider$\alpha = \Pi_{j \not =i } (b_j + c_j) = 1$ , notice$\Pi_{j \not = i}c_j - 1 \in I_i$ and$\Pi_{j \not = i} c_j \in I_j$ - Use above proof, to get
$c_i \equiv 1 (I_i), c_i \equiv 0 (I_j)$ , and consider$\alpha = \Sigma_i a_i c_i$ , then$\alpha = a_i c_i + \Sigma_{j \not = i} a_j c_j \equiv a_i c_i (I_i)$ - Forward
- Fix
$a_1, \cdots, a_n$ , and$b \in R$ , where$b \equiv a_i (I_i)$ , then fix$I_i$ , consider$b - a = b - a_i + a_i - a \in I_i$ , as$b - a_i, a_i - a \in I_i$ , thus$b - a \in \cap_i I_i$
- Fix
- Reverse
- Suppose
$b \equiv a (\cap_i I_i)$ , consider$I_i$ , then$b - a_i = b - a + a - a_i \in I_i$ , as$b - a, a - a_i \in I_i$
- Suppose
- Consider
$\phi : R \rightarrow R/I_1 \times \cdots R / I_n$ , where$a \in R$ ,$\phi(a) = (a + I_1, \cdots, a + I_n)$ , then$ker(\phi) = \bigcap_i I_i$ - Furthermore, fix
$a' \in (a_1 + I_1, \cdots , a_n + I_n)$ , then$a' \cong a_i (I_i)$ , which exists by 2 above - If
$a \sim b (\cap_i I_i)$ , then$\phi(a) - \phi(b) = \phi(a - b) = (0 + I_i, \cdots)$ as$a - b \in \bigcap_i I_i$ - Result follows from first ITM for rings
- Furthermore, fix
- Fix
- Let
- If
- WTS similar factor thms for rings as for grps. ie
-
problems
- Notice
$I \subset R$ a proper-ideal of$R$ , is not a sub-ring of$R$ ,$1_R \not \in I$ , and$S \subset R$ a proper sub-ring of$R$ is not an ideal of$R$ , as$\exists s \in R \backslash S, a \in S, as \not \in S$ - Consider
$m_i \in \mathbb{Z}$ , where$(m_i, m_j) = 1$ , and$a_1, \cdots a_n \in \mathbb{Z}$ ,$\exists a \in \mathbb{Z}$ , where$a \equiv a_i (m_i)$ - Consider
$m_i\mathbb{Z}$ are relatively prime ideals of$\mathbb{Z}$ , thus apply$2, 3$ for existence of$a$ , and congruence of$b$ if it exists, i.e$\cap_i m_i \mathbb{Z} = m_1\cdots m_n \mathbb{Z}$
- Consider
- If
$m_i \in \mathbb{Z}$ where$(m_i, m_j) = 1$ , and$m = m_1 \cdots m_n$ , show that $\mathbb{Z}m \cong \mathbb{Z}{m_i}$- Consider
$m_i \mathbb{Z}$ , and apply 4 of CRT, i.e $\mathbb{Z}/\cap_i m_i\mathbb{Z} = \mathbb{Z} / m\mathbb{Z} = \mathbb{Z}m$, and $\mathbb{Z} / m_i \mathbb{Z} = \mathbb{Z}{m_i}$
- Consider
- Suppose
$R = R_1 \times R_2$ , where$R'_1 = R_1 \times {0}, R'_2 = R_2 \times {0}$ , show that$R / R_1' \cong R_2$ , and$R / R_2' \cong R_1$ - Consider
$\phi : R \rightarrow R_2$ , where$\phi((r_1, r_2)) = r_2$ , thus$ker(\phi) = R_1'$ , apply first IST
- Consider
- Show that the intersection of ideals
$I_i$ coincides w/ product$\Pi_i I_i = {\Sigma_i \Pi_{1 \leq k \leq n}a_{ki}}$ ,$\bigcap_i I_i \cong \Pi_i I_i$ - Fix
$\phi : \cap_i I_i \rightarrow \Pi_i I_i$ , where$\phi(a) = (a_1, \cdots, a_n), a_i \in I_i$
- Fix
- Let
$I_1, \cdots, I_n$ be ideals in$R$ , where$\Pi_i R/I_i \cong R/\cap_i I_i$ , show that$I_i$ are relatively prime in pairs- Notice map
$\phi : R \rightarrow R/I_1 \times \cdots \times R/I_n$ is not EM? Cannot find pre-image of$a \in R/I_1 \times \cdots \times R/I_n$ if$I_i, I_j$ not relatively prime? - Suppose
$I_i, I_j$ are not relatively prime, and$\phi$ is iso, fix$(\cdots, 1 + I_i, \cdots, 0 +I_j)$ , then the pre-image$a \in R$ ,$1 - a \in I_i, a \in I_j, 1 \in I_i + I_j$ (contradiction)
- Notice map
- Notice
-
Maximal And Prime Ideals
-
Maximal Ideal -
$I$ is a maximal ideal that is not contained in any strictly larger proper ideal - Every ideal
$I \subset R$ is contrained in a maximal ideal.. every ring has at most one maximal ideal- Apply zorns, consider
$R' \subset 2^R$ , (the set of proper ideals of$R$ ), then for each$A \subset R'$ ,$\bigcup_{I \in A} I$ is an ideal, and contains all ideals in the chain, thus by zorn's a maximal (by subset ordering) exists in$R$
- Apply zorns, consider
- Let
$M$ be ideal of comm. ring$R$ , then$M$ is maximal iff$R/M$ is a field- Forward - Suppose
$M$ is a maximal ideal, suppose$a \in R/M$ , then$aR + M = d$ , if$d \not = R = \langle 1_R \rangle$ , then$M \cup aR \supset M$ , and$a \in M$ , thus$\exists r \in R, ra + m = 1$ , and$r + M \in R/M$ is inverse of$a + R$ - Reverse
- Suppose
$R/M$ is a field, and$M$ is not maximal, then there exists$aR$ (ideal), where$aR \cup M \supset M$ , and$a \in R/M$ does not have a mult. inverse, and$R/M$ is not a field - Notice, since
$R/M$ is a field, the only ideals of$R/M$ are$0R, R$ , thus by Correspondence thm, the only ideals of$R$ containing$M$ is$R$ itself, and$M$ is maximal
- Suppose
- Forward - Suppose
-
prime ideal -
$P \subset R$ is a prime ideal, if$P$ is PI, and for$ab \in P$ then$a \in I \lor b \in P$ - If
$P$ is an ideal in$R$ (commutative), then$P$ is prime ideal iff$R/P$ is integral domain- Forward
- Suppose
$P$ is a prime ideal, where$a, b \in R/P$ then if$ab + P = 0_{R/P}$ , then$a \in P \lor b \in P \rightarrow a + P = 0 \lor b + P = 0$ , thus$R/P$ is integral domain
- Suppose
- Reverse
- Suppose
$R/P$ is an integral domain, thus for$a, b \in R/P$ , if$ab + P = 0, ab \in P$ , then$a + P = 0 \lor b + P = 0$
- Suppose
- Forward
- In a commutative ring, a maximal ideal is prime
- Suppose
$M$ is a maximal ideal, then$R/M$ is a field- Field is integral domain
- Suppose
$ab = 0 \rightarrow a^{-1}ab = a^{-1} 0 \rightarrow b = 0$
- Suppose
- And
$R/M$ is an integral domain, thus$M$ is prime
- Field is integral domain
- Suppose
- Let
$f : R \rightarrow S$ is am EM of comm. rings- If
$S$ is a field,$ker(f)$ is a maximal ideal of$R$ - If
$S$ is an integral domain,$ker(f)$ is a prime ideal of$R$
- If
- Proof
- Suppose
$S$ is a field, then$R/ker(f) \cong S$ , thus for$a \in R/ker(f)$ , where$f(a) \in S$ ,$f(a)^{-1} \in S$ , and$\exists b \in R/ker(f), f(b) = f(a)^{-1}$ (isomorphic), thus$f(ab) = 1 \rightarrow ab = 1 \rightarrow b = a^{-1}$ , and$R/ker(f)$ is a field, thus$ker(f)$ is a maximal ideal - Suppose
$S$ is integral domain, then$R/ker(f) \cong S$ , then fix$a, b \in R/ker(f)$ , then$f(ab) = f(a)f(b) = 0 \rightarrow a + ker(f) = ker(f) \lor b + ker(f) = 0$ , and$R/ker(f)$ is integral domain, thus$ker(f)$ is a prime ideal
- Suppose
- Let
$\mathbb{Z}[X] = {f(X) = \Sigma_i a_ix^i, a_i \in \mathbb{Z}}$ , then$\langle X \rangle \subset \mathbb{Z}[X] = {f(X) : a_0 = 0}$ ,-
$\langle 2 \rangle \subset \mathbb{Z}[X] = {f(X) : a_i = 2k, k \in \mathbb{Z}}$ , notice$2 \not \in \langle X \rangle, X \not \in \langle 2 \rangle$ , and$\langle 2 \rangle, \langle X \rangle$ proper ideals, (could both be maximal?) - Consider
$\phi : \mathbb{Z}[X] \rightarrow \mathbb{Z}$ , where$\phi(f(X)) = a_0$ , then$ker(\phi) = \langle X \rangle$ , thus$\mathbb{Z}[X] / \langle X \rangle \cong \mathbb{Z}$ , and$\langle X \rangle$ is prime ideal - Consider
$\psi : \mathbb{Z}[X] \rightarrow \mathbb{Z}_2[X]$ , where$\psi(f(X)) = \overline{a_0} + \overline{a_1}x + \cdots$ , where$\overline{a} = a (2)$ , then$ker(\psi) = \langle 2 \rangle$ , and$\langle 2 \rangle$ is a prime ideal - Neither are maximal
$\langle 2 \rangle \subset \langle 2, X \rangle$
-
-
problems
- For
$\langle n \rangle \subset \mathbb{Z}$ show that$\langle n \rangle$ is prime iff$n$ is prime- Suppose
$n$ is prime, then fix$a, b \in \mathbb{Z}$ , then if$ab \in \langle n \rangle$ ,$n | ab \rightarrow n | a \lor n | b$ , - Suppose
$\langle n \rangle$ is prime, then if$ab \in \mathbb{Z}$ ...
- Suppose
- Suppose
$I$ is a prime ideal of$\mathbb{Z}$ , then$I$ is maximal- Triv. suppose
$a \in \mathbb{Z}/I$ , notice$I = \langle n \rangle$ , where$n$ is prime, then$(a, n) = n \lor (a, n) = 1$ , thus the only ideals of$\mathbb{Z}/I$ are${0}, \mathbb{Z}/I$ , and$I$ is prime
- Triv. suppose
- Consider
$X \subset F[[X]]$ (formal power series in$\mathbb{Z}$ )- Notice
$F[[X]]/\langle X \rangle \cong F$ , thus$\langle X \rangle$ is maximal ideal
- Notice
- Let
$I$ be a proper ideal of$F[[X]]$ , show that$I \subset \langle X \rangle$ , thus$\langle X \rangle$ is the unique maximal ideal of$F[[X]]$ - Notice, if
$I$ is ideal of$F[[X]]$ , then if$a \in F, a \not \in I$ ... - Ring with unique maximal ideal is called local ring
- Notice, if
- Let
$f : R \rightarrow S$ be a ring HM, where$R, S$ are comm. if$P$ is a prime ideal of$P \subset S$ , show that$f^{-1}(P) \subset R$ - Consider
$ab \in f^{-1}(P), f(ab)= f(a)f(b) \in P$ , adn$f(a) \in P \rightarrow a \in f^{-1}(P) \lor \cdots$
- Consider
-
Show that above does not hold when
$P$ is a max. ideal - Show that prime ideal
$P$ cannot be intersection of two strictly larger ideals$I, J$ - Notice,
$I \cap J \cong \Sigma a_i a_j$ - Suppose
$P = I \cap J$ , where$P \subset J$ (is strict), fix$j \in J$ , then$ij \in P, \forall i \in I$ , and either$I \subset P$ , or$J \subset P$ (contradictions)
- Notice,
- For
-
Maximal Ideal -
-
Polynomial Rings
-
Evaluation HM
- Fix
$x \in R$ , then$E_x : R[X] \rightarrow R$ (only HM iff$R$ is comm.), where$E_x(f(X)) = f(x)$ - If
$R$ is not comm. $E_x((1 + aX)(1 + bX)) = E_x(1 + aX + bX + abX^2) = 1 + ax + bx + abx^2$ -
$E_x(1 + aX)E(1 + bX) = (1 + ax)(1 + bx) = 1 + ax + bx + axbx$ ($axbx \in R$ )
- If
- Fix
-
Division Algorithm -
-
$f, g \in R[X]$ , where$g$ is monic (leading coeff. is one), then there are unique poly.$p, q$ , where$f = pg + q$ , where$deg q < deg g$ , if$R$ is field$p$ can be any non-zero poly.- Assume
$deg(g) < deg(f)$ (otherwise set$q = f, p = 0$ ), consider$r = f - lg, l \in R[X]$ , suppose$deg(r) \geq deg(g)$ , then let$a_n$ be the leading coeff. of$r$ , and$r - x^{n - deg(g)}g$ contradicts the earlier hyp., thus$deg(r) < deg(g)$ , and the thm. holds- Thus
$f = lg + r$
- Thus
- If
$f = p_1g + r_1$ ,$f = p_2g + r_2$ , then$(p_1 - p_2)g = r_1 - r_2$ , if$p_1 - p_2 \not = 0$ , then$deg((p_1 - p_2)g) \not= deg(r_1 - r_2)$
- Assume
-
-
Remainder Theorem
- If
$f \in R[X]$ , and$a \in R$ , then$\exist q \in R[X]$ where$f(X) = q(X)(X - a) + f(a)$ - Consider division algorithm with
$f = f(X), g = X - a$ , then,$f = q(X)(X - a) + r$ , where$deg(r) < 1 \rightarrow r \in R$ , and$f(a) = r$ ,
- Consider division algorithm with
- If
- If
$R$ is an ID, then$f \in R[X]$ , where$deg(f) = n$ , has at most$n$ roots- Suppose
$R$ is ID, then continue by induction on$deg(f)$ , when$deg(f) = 1$ ,$f(X) = X - a, a \in R$ , and$a$ is the only root. Assume the hyp. holds for$deg(f) \leq n$ , then fix$deg(f) = n + 1$ , notice,$f(X) = q(X)(X - a) + f(a)$ , then if$f(a) = 0$ ,$f$ has$deg(q(X)) + 1 \leq n + 1$ roots. The proof follows by ind.. - Alternative proof, fix
$f \in R[X]$ , if$f$ has no roots we are done. Suppose$f(a_1) = 0$ , then$f(X) = q(X)(X - a_1)^{n_1}$ , if$a_2 \not = a_1$ is another root, then$0 = f(a_2) = q(X)(a_2 - a_1)^{n_1}$ , since$(a_2 - a_1)^{n_1} \not = 0$ , and$R$ is ID, then$q(a_2) = 0$ , where$deg(q) \leq n$ , and the hyp holds, thus$root(f) \leq deg(q) + 1 \leq n + 1$
- Suppose
-
problems
- Let
$a, b \in \mathbb{Z}$ , consider the Euclidean Algorithm, where-
$a = q_1b + r_1$ , where$r_1 < b$ , otherwise, set$q_1' = q_1 + b, r' = r - b$ , $b = q_2r_1 + r_2$ $\cdots$ -
$r_n = q_{n+2}r_{n+1} + r_{n+2}$ , until$r_i = 0$
-
- Show that
$gcd(a, b) = r_i$ , where$r_{i - 1} = q_{i + 1}r_i$ - Notice, if
$k | a \land k | b$ , then$c_ak = q_1c_bk + r_1\rightarrow k(c_a - q_1c_b) = r_1$ , and$k | r_1$ ,- Thus if
$k = gcd(a, b)$ , then$k | a \land k | b \rightarrow k | r_1$ , and$gcd(a, b) | gcd(b, r_1)$ , similarly, since$a = q_1b + r_1$ , and$gcd(b, r_1) | b \land gcd(b, r_1) | r_1$ ,$gcd(b, r_1) | a$ , and$gcd(b, r_1) | gcd(a, b) \rightarrow gcd(a,b) = gcd(b, r_1)$
- Thus if
- Naturally,
$gcd(a, b) = gcd(b, r_1) = gcd(r_1, r_2) \cdots gcd(r_{i-2}, r_{i - 1})$ , where$r_{i - 2} = q_{i}r_{i - 1}$ , and$gcd(r_{i - 2}, r_{i - 1}) = r_{i - i}$ , thus$gcd(a,b) = r_{i - 1}$
- Notice, if
- If
$d = gcd(a,b)$ show that there are$x, y \in \mathbb{Z}$ where$d = ax + by$ - Notice,
$a = k_ad, b = k_bd$ , where$gcd(k_a, k_b) = d'$ , where$gcd(a,b) = dd' = d$ , and$d' = 1$ , thus$gcd(k_a, k_b) = 1$ , notice, since$\mathbb{Z} = \langle k_a, k_b\rangle$ , there exist,$x, y \in \mathbb{Z}$ , where$xk_a + yk_b = 1$ , and$xk_a d + yk_b d = ax + by = d$
- Notice,
- Use above result to show that
$\mathbb{Z}_p$ is field iff$p$ is prime- Fix
$l \in \mathbb{Z}_p$ , where$l \not= 0$ , then$gcd(l, p) = 1$ , and$\exists x, y \in \mathbb{Z}, xl + yp = 1$ , and,$l \sim 1$ , thus$x = l^{-1} (p)$ , and$\mathbb{Z}_p$ is field - Similar to above
- Fix
- Define 3 sequences by
$r_i = r_{i - 2} - q_ir_{i - 1}$ $x_i = x_{i - 2} - q_i x_{i - 1}$ $y_i = y_{i- 2}- q_i y_{i - 1}$
- For
$i \geq -1$ , where$r_{-1} = a, r_0 = b, x_{-1} = 1, x_0 = 0, y_{-1} = 0, y_0 1$ , show that one can generate$r_i = ax_i by_i$ for all steps of the algo, and at each stage$r_i = ax_i = by_i$ -
$r_i = ax_i + by_i$ - For
$r_1 = a - q_1b$ ,$x_1 = 1$ ,$y_1 = q_1$ -> checks out - Suppose that
$r_n = ax_n + by_n$ - For
$r_{n + 1} = r_{n - 1} + q_{n + 1}r_n = ax_{n - 1} + by_{n - 1} + q_{n + 1}(ax_n + by_n) = a(x_{n - 1} + q_{n + 1}y_n) + b(y_{n - 1} + q_{n + 1}y_n) = ax_{n + 1} + by_{n + 1}$
- For
- Notice,
$r_{i - 2} = q_i r_{i - 1} + r_i$ , and$r_i = r_{i - 2} - q_i r_{i - 1}$ , thus the algorithm is generated by above steps - Also notice
$q_i = \frac{r_{i -2} - r_{i}}{r_{i - 1}}$ , where$r_{i} < r_{i - 1}$ (thus for integer division it can be discarded ()will be zero) - Thus algorithm is, set
$q_i = \frac{r_{i - 2}}{r_{i - 1}}$ , and proceed setting up aux variables until,$r_i = 0$ , then set$gcd(a, b) = r_{i - 1}$ - Memoize prev. solutions.. for each value (can also get rid of space constraint)
-
- If
$a(X)$ and$b(X)$ are poly. w/ coeffs. in$F$ (field), the EA can be used to find their GCD, i.e a monic poly. of maximal deg$q = gcd(f, g)$ , and$q | f \land q | g$ - Show that
$d(X) = gcd(f(X), g(X))$ , then$\langle d(X) \rangle = \langle f(X), g(X) \rangle$ - That
$\langle d(X) \rangle \supset \langle f(X), g(X) \rangle$ is simple - Suppose
$k(X) \in \langle d(X) \rangle$ , then$k(X) = p(X)d(X) = p(X) (a(X)f(X) + b(X)g(X))$ , and$k(X) \in \langle f(X), g(X) \rangle$
- That
- Show that
-
Lagrange Interpolation Formula
- Let
$a_0, a_1, \cdots, a_n \in F$ , where$F$ is a field, define$P_i(X) = \Pi_{j\not= i} \frac{X - a_j}{a_i - a_j}, i = 0, 1, \cdots, n$ , if$b_0, \cdots, b_n$ are arb. elements of$F$ , use$P_i$ to find$f(X)$ ,$deg(f) \leq n$ , where$f(a_i) = b_i$ for all$i$ -
$f(X) = \Sigma_i b_i P_i(X)$ , notice each$deg(P_i(X)) = n$
-
- Show that the
$f(X)$ determined previously is unique.- Suppose that
$g(X) \in R[X]$ , consider$f - g$ , then$\forall i, (f - g)(a_i) = 0$ (i.e there are$n + 1$ roots), and thus$deg(f - g) \geq n$ ,
- Suppose that
- Let
- Let
-
Evaluation HM
-
Unique Factorization
- Let
$a, b \in R$ , then$a, b$ are associates if$a = ub$ for some unit$u \in R$ -
$a \in R$ , then$a$ is irreducible if it can't be represented as a product of non-units -
$p \in R$ is prime if when$p | a_1 \cdots a_n$ , then$p | a_1 \lor \cdots \lor p | a_n$ (i.e if$p$ divides a product of terms, it divides at least one of the terms) - I.e in
$\mathbb{Z}$ $p$ is prime iff it is irreducible- Irreducibles in
$\mathbb{Z}$ are$1, -1$ ,
- Irreducibles in
- If
$a$ is prime, then$a$ is irreducible, the converse is not true- Suppose
$p \in R$ , is prime, and$p = ab$ , then WlOG$p | a$ , thus$a = pk, k \in R$ , and$a = abk$ , thus$1 = bk$ , and$b$ is a unit - Consider
$2 \in \mathbb{Z}[\sqrt{-3}]$ , suppose$(a + b\sqrt{-3})(c + d\sqrt{-3}) = 2$ , then$\overline{2} = 2 = (a - b\sqrt{-3})(c - d\sqrt{-3})$ , thus$4 = 2\overline{2} = (a^2 + 3b^2)(c^2 + 3d^{2})$ , and$(a^2 + 3b^2) | 4 \land (c^2 + 3d^{2}) | 4$ , notice neither can be$2$ ($\sqrt{2} \not\in \mathbb{Z}$ ), thus one is$4$ and the other is$1$ , thus$c = 1, d = 0$ (resp.$a, b$ ), and$2$ is irreducible (one of factors must be unit$1$ )-
$2$ is not prime as$2 | 4$ , and$4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ , and$2\not | (1 + \sqrt{-3}) \lor 2 \not | (1 - \sqrt{-3})$ thus$2$ is irreducible, but not prime
-
- Suppose
-
Definition
-
Unique Factorization Domain -
$R$ (integral domain)- Every non-zero element
$a \in R$ , can be expressed as follows$a = up_1\cdots p_n$ (where$p_i$ are irreducible, and$u \in R$ is a unit) - If
$a = vq_1\cdots q_m$ , then$m = n, \forall p_i = q_iu$ (i.e the$p_i, q_i$ are associates)
- Every non-zero element
- In UFD
$a$ is irreducible iff$a$ is prime- Reverse proved above
- Suppose
$a \in R$ (UFD) is IRD. then$a | bc$ , and$ad = bc$ , thus$aud_1\cdots d_n = ub_1\cdots b_n vc_1\cdots c_n$ , in which case$uad_1\cdots d_n = ub_1\cdots b_n c_1 \cdots c_n$ , and$d_i$ must be associates of$b_i \lor c_i$ , and since$a$ is irreducible,$a$ must also be an associates of some$c_i \lor b_i$ , thus$a | c \lor a | d$
-
Unique Factorization Domain -
- When is ID a UFD?
- Let
$R$ be ID- If
$R$ is a UFD,$R$ satisfies the ascending chain condition, on PIDs, i.e$a_1, \cdots \in R$ , where$\langle a_1 \rangle \subset \langle a_2 \rangle \subset \cdots$ , then for some$N$ ,$\forall n \geq N, \langle a_n \rangle = \langle a_{n + 1} \rangle$ - This implies UF1 i.e every
$r \in R$ can be factored into unique irreducibles
- This implies UF1 i.e every
- If every
$r \in R$ ,$r$ is irreducible, then$r$ is prime,$R$ is UFD
- If
- Suppose
$R$ is UFD, and consider$a_i \subset R$ , notice, each$a_i = up_1\cdots p_n$ , where$p_i$ are irreducibles, in which case, if$\langle a_i \rangle \subset \langle a_{i + 1} \rangle$ ,$a_{i + 1} | a_i$ , and$a_{i + 1}$ has the same or fewer irreducible factors as$a_i$ , there are only finitely many factors, thus the sequence can only finitely continue w/$a_{i + n} = p_i$ , thus if$\langle a_{i + n} \rangle \subset \langle a_{i + n + 1} \rangle$ , then$a_{i + n + 1} = pu \lor a_{i + n + 1} = u$ (where$u \in R$ , is a unit) - Suppose
$R$ satisfies acc, fix$a \in R$ , and$a$ cannot be factored into irreducibles, then consider$a_i$ , where$a_0 = a$ , and$a_1 | a$ , where$a_1 \not \in \langle a \rangle$ , then there exists$N$ , where$n \geq N, \langle a_n \rangle \subset \langle a_{n + 1} \rangle$ , thus$a_n$ is irreducible, otherwise, fix$b | a$ , and set$a_{N + 1} = b$ (contradiction),$a_N | a$ is an irreducible factor of$a$ . Continue this practice with$a'_0 = a$ , and$a^i_1 = a|a_na^1_n \cdots$ to get all irreducible factors of$a$ - Suppose
$R$ satisfies UF1 (every$a \in R$ can be factored into irreducibles), and every irreducible$a \in R$ is prime.- Fix
$a \in R$ , where$a = up_1 \cdots p_n$ , and$a = vq_1\cdots q_n$ , then$p_1 | vq_1\cdots q_n$ , and since$p_1$ is irreducible -> prime,$p_1 | q_i$ for some$i$ , however$q_i$ is prime, and$p_1 = q_ia_i$ (where$a_i$ is a unit), continue this process
- Fix
- Let
- PID - ID in which every ideal is principal
- Every PID is a UFD
- WTS: every irreducible in PID is prime + acc
- acc
- Fix
$a_i \subset R$ , then consider$I = \bigcup_i \langle a_i \rangle$ , and$I = \langle b \rangle$ , thus$\langle b \rangle \subset \bigcup \langle a_i \rangle$ , and for some$a_n, \langle b \rangle \subset \langle a_n \rangle$ , thus take$N = n$
- Fix
- Every IRD in PID is prime
- Suppose
$R$ is a PID, and$a \in R$ is irreducible, then$\langle a \rangle \subset I$ where$I$ is a maximal ideal, and$I = \langle b \rangle$ (PID), thus$a \in \langle b \rangle \rightarrow b | a$ , and$b = au$ (associates, since$a$ is irreducible), thus$\langle a \rangle = I$ , and$\langle a \rangle$ is maximal -> prime, thus$a$ is prime
- Suppose
-
$R$ is a PID iff$R$ is a UFD, and every non-zero prime ideal of$R$ is maximal- Forward - Suppose
$R$ is PID, then$R$ is UFD by above, fix prime$p \in R$ , then$\langle p \rangle \subset \langle q \rangle$ ($\langle q \rangle$ is maximal), then$q | p$ , but$p$ is prime$\rightarrow$ maximal, and$q = pu$ (where$u$ is a unit), thus$\langle p \rangle = \langle q \rangle$ (and$p$ is maximal)
- Forward - Suppose
-
problems
- If
$R$ is UFD, and every non-zero prime ideal of$R$ is maximal, consider$I \subset R$ ,$I$ is ideal, and$I \not= 0$ , then for$a \in I$ ,$a = up_1\cdots p_t$ , ($R$ is UFD), where$p_i$ are IRD, let$r = r(I)$ , be the minimum$t$ . We prove by induction on$r$ that$I$ is principal- Suppose
$r = 0$ , that is$u \in I$ , where$u$ is a unit, thus$u | 1$ , and$I = \langle u \rangle = \langle 1 \rangle$ - Suppose the result holds for all
$r < n$ , let$r = n$ , thus$up_1\cdots p_n \in I$ , and$p_1\cdots p_n \in I$ , choose$\langle p_1 \rangle$ (maximal ideal by hyp.), thus$R/\langle p \rangle$ is a field, if$b \in I \land b \not\in \langle p_1 \rangle$ , show that for some$c \in R$ ,$bc - 1 \in \langle p_1 \rangle$ - consider
$b + \langle p_1 \rangle \in R/\langle p_1 \rangle$ (a field), thus$c= b^{-1} \in R/\langle p_1 \rangle$ , where$bc + \langle p_1 \rangle = 1 + \langle p_1 \rangle$ , and$bc - 1 \in \langle p_1 \rangle$
- consider
- Show that the above implies
$p_2\cdots p_n \in I$ - as
$bc - 1 \in \langle p_1 \rangle \rightarrow \exists d, bc - dp_1 = 1$ , thus fix$b \in I \backslash \langle p_1 \rangle$ , then$bcp_2\cdots p_n - dp_1\cdots p_n = p_2 \cdots p_n \in I$ , and$r(I) = n - 1 < n$ (a contradiction), thus$I \backslash \langle p_1 \rangle = \emptyset$ , and$I \subset \langle p_1 \rangle$
- as
- Let
$J = {x \in R: xp_1 \in I }$ , show that$J$ is an ideal- Fix
$a, b \in J$ , and$a + b = (x_1 + x_2)p_1 \in I$ , thus$a + b \in J$ , naturally$J$ is closed under addition, thus$J$ is an ideal
- Fix
- Show that
$Jp_1 = I$ - naturally
$Jp_1 \subset I$ , as$x \in Jp_1$ ,$x = x'p_1$ , where$x' \in J \rightarrow x'p_1 \in I$ - Fix
$b \in I$ , then$b \in \langle p_1 \rangle$ , and$b = b'p_1$ , thus$b' \in J$ , and$b \in Jp_1$
- naturally
- Finish proof
- Consider
$J$ , then$p_2 \cdots p_n \in J$ , thus$r(I) \leq n-1$ , and$J = \langle b \rangle$ , and$Jp_1 = I$ , thus$I = \langle bp_1 \rangle$
- Consider
- Suppose
-
$p, q \in R$ (primes), where$R$ is ID, show that$\langle p \rangle \not \subset \langle q \rangle$ - Suppose so, then
$p \in \langle p \rangle \subset \langle q \rangle$ , and$q | p$ , that is$qk = p$ , and$p | qk$ , thus$p | q \lor p | k$ , notice if$p | q$ , then$\langle p \rangle = \langle q \rangle$ (contradiction), otherwise$p | k$ , but$k | p$ , thus$p = qp$ ($q$ is associate), and$q$ is a unit ($\langle q \rangle$ is not proper, thus not prime) (contradiction)
- Suppose so, then
- If
$R$ is UFD, and$P \subset R$ is nonzero-prime ideal, show that$P$ contains a principal prime ideal- Fix
$a \in P$ , thus$a = p_1\cdots p_t$ , then$p_1 \in P \lor p_2\cdots p_n \in I$ continue until single element$p_1 \in I$ , thus$\langle p_i \rangle \subset I$ , and$p_i$ is irreducible thus prime in$R$ (UFD)
- Fix
- If
- Let
-
Principal Ideal Domains + Euclidean Domains
- Let
$R$ be a PID, where$A \subset R$ is a non-empty subset, then$d = gcd(A)$ iff$\langle A \rangle = \langle d \rangle$ - Forward
- Let
$d = gcd(A)$ , notice,$\langle A \rangle \subset \langle d \rangle$ , suppose$\langle A \rangle = \langle b \rangle$ , then$\forall a \in A, b | a$ , thus$b | d = gcd(A)$ , and$\langle d \rangle \subset \langle b \rangle = \langle A \rangle$ , thus$\langle d \rangle = \langle A \rangle$
- Let
- Reverse
- Suppose
$\langle d \rangle = \langle A \rangle$ , naturally$d | gcd(A)$ , for the reverse direction,$d \in \langle A \rangle = \langle gcd(A) \rangle$ , thus$gcd(A) | d$ , thus$d = gcd(A)$
- Suppose
- Forward
-
Euclidean Domains
- Let
$R$ be ID, then$R$ is Euclidean Domain if$\Psi : R \backslash {0} \rightarrow \mathbb{Z}_{> 0}$ , with the following property- If
$a, b \in R$ , then$\exists q, r \in R$ , where$a = bq + r$ , and$\Psi(r) < \Psi(b)$ or$r = 0$
- If
- Let
- If
$R$ is ED, then$R$ is PID- Let
$I$ be an ideal of$R$ , If$I = {0}$ then$I = \langle 0 \rangle$ , suppose$I \not = 0$ , then fix$b = min_{a \in I}\Psi(a)$ , choose$a \in I$ , then$a = bq + r$ , where$\Psi(r) < \Psi(b)$ , thus$r = 0$ , and$a = qb$ , thus$a \in \langle b \rangle$ , and$I \subset \langle b \rangle$ , thus$I = \langle b \rangle$
- Let
-
Example
- Let
$d = \pm 1, \pm 2, 3$ , then$\mathbb{Z}[\sqrt{d}]$ is an ED, where$\Psi(a + b\sqrt{-d}) = |a^2 - db^2|$ - Fix
$a, b \in \mathbb{Z}[\sqrt{d}]$ , consider$x + y\sqrt{d}$ , notice$x + y\sqrt{d}$ , however$x, y \in \mathbb{Q}$ , thus choose$x_0 + y_0\sqrt{d}$ , where$|x - x_0| < 1/2$ , and$|y - y_0| < 1/2$ -
$q = x_0 + y_0\sqrt{d}$ , and$r = a - bq = b(x + y\sqrt{d}) - bq = b((x - x_0) + (y - y_0)\sqrt{d})$ - For
$\Psi(b) > \Psi(r)$ , then$\Psi(r) = \Psi(b)((x - x_0) + (y - y_0)\sqrt{d}) = \Psi(b)|1/4 + 1/4d|$ , thus for$\pm 2, \pm 1, -3$
-
- Fix
- Let
-
problems
- Let
$A = {a_1, \cdots a_n } \subset R$ ($R$ is PID). Show that$m$ is lcm iff$\langle m \rangle = \langle \bigcap_i \langle a_i \rangle$ - Forward
- Suppose
$m$ is lcm of$a_i$ , then$a_i | m$ , thus$m \in \langle a_i \rangle$ , and$\langle m \rangle \subset \langle \cap_i a_i \rangle$ , furthermore,$m | a_1\cdots a_n$ , and$\langle \cap_i a_i \rangle = \langle a_1 \cdots a_n \rangle$ , thus$a_1 \cdots a_n \in \langle m \rangle$ , and$\langle m \rangle = \langle cap_i a_i \rangle$
- Suppose
- Reverse
- Suppose
$\langle m \rangle = \langle \cap_i a_i \rangle$ , then$a_i | m$ , and$lcm(a_i) | m$ , furthermore,$lcm(a_i) \in \langle \cap_i a_i \rangle = \langle m \rangle$ , thus$m | lcm(a_i)$ , and$m = lcm(a_i)$
- Suppose
- Forward
- Suppose
$R$ is ED, where$\Psi(a) \leq \Psi(ab)$ for all non-zero elements, show that$\Psi(a) \geq \Psi(1)$ , with eq if$a$ is unit- If a is unit, then
$ab = 1$ , and$\Psi(1) = \Psi(ab) \geq \Psi(a)$ , however,$\Psi(a) = \Psi(a1) \geq 1$ , and$\Psi(1) = \Psi(a)$ - Suppose
$a$ is not a unit- Then
$\Psi(a) = \Psi(a1) \geq \Psi(1)$
- Then
- Suppose
$\Psi(a) = \Psi(1)$ - then
$\Psi(1) \geq \Psi(a)$ , consider$1 = aq + r$ , then$\Psi(r) < \Psi(a) = \Psi(1)$ (false), thus$r = 0$
- then
- If a is unit, then
- Let
$R = \mathbb{Z}[\sqrt{d}]$ , where$\Psi(a + b\sqrt{d}) = |a^2 - db^2|$ , show that$\forall \alpha, \beta \in \mathbb{Z}[\sqrt{d}], \Psi(\alpha \beta) = \Psi(\alpha)\Psi(\beta)$ - calculational
- Let
$R = \mathbb{Z}[\sqrt{d}]$ , where$d$ is not a perf. square, show that 2 is not prime in$R$ -
$2 | d(d - 1)$ , as$2 | d \lor 2 | d - 1$ , however,$d^2 - d = (d + \sqrt{d})(d - \sqrt{d})$ , and$2$ divides neither of the divisors
-
- If
$d$ is negative integer, w/$d \leq -3$ , show that$2$ is IRD in$\mathbb{Z}[\sqrt{-d}]$ - Suppose
$a | 2$ , where$a \in \mathbb{Z}[\sqrt{d}]$ , then$|a^2 - db^2| | 4$ , however$\Psi(a) \geq \Psi(2)$
- Suppose
- If
$\alpha = a + bi$ is a gaussian integer,$\Psi(\alpha) = a^2 + b^2$ , if$\Psi(\alpha)$ is prime in$\mathbb{Z}$ , show that$\alpha$ is prime in$\mathbb{Z}[i]$ - Also can show irreducibility
- Suppose
$\alpha = \beta \gamma$ , then$\Psi(\alpha) = \Psi(\beta)\Psi(\gamma)$ , thus WLOG$\Psi(\beta) = 1$ ($\Psi(\alpha)$ is IRD), and$\beta$ is unit
- Let
- Let
-
Rings of Fractions
- Given
$R$ (comm. ring), define field of fractions as$R$ and all quotients in$R$ , however, if$R$ is not ID, and$a,b,c,d\in R, bd = 0$ , then$\frac{a}{b}\frac{c}{d} = \frac{ac}{0}$ ? -
Definitions
- Let
$S \subset R$ ,$S$ is a multiplicative subset if,$0 \not \in S$ ,$1 \in S$ , and if$a, b \in S, ab \in S$ (closed under mult.)- The set of all
$a \in S$ , that is not a zero-divisor - if
$P \subset R$ is prime ideal, then$R/P$ , fix$a, b \in R/P \backslash {0}$ ,$a, b \in R/P, a,b \not = 0$ , then$ab \not \in R/P \backslash {0} \rightarrow ab \in P$ (contradiction)
- The set of all
- Define
$\sim$ over$R \times S$ ($R$ is ID / comm.), where$(a, b) \sim (c, d) \iff \exist s \in S, s(ad - bc) = 0$ , then$ad - bc = 0$ ($s \in S$ )- Consider
$(a, b) \in R \times S$ , then,$\forall s \in S, s(ab - ab) = s0 = 0$ , thus$(a, b) \sim (a, b)$ - If
$(a, b), (c, d) \in R \times S$ , then$(a, b) \sim (c, d) \rightarrow \exist s \in S, s(ad - bc) = 0$ , and$ad - bc = 0$ , then$cb - da = bc - ad = -(ad - bc) = 0$ , thus$(c, d) \sim (a, b)$ - Suppose
$(a, b), (c, d), (e, f) \in R\times S$ , where$(a, b) \sim (c, d) \land (c,d) \sim (e, f)$ , then$s(ad - bc) = t(cf - de) = 0$ , then consider$st(adf - bcf) = st(bcf - bde) \rightarrow st(adf - bcf) + st(bcf - bde) = st(adf - bde) = std(af - be) = 0$ , and$(a, b) \sim (e, f)$ , thus$\sim$ is equiv. relation
- Consider
-
ring of fractions - The set of equivalence classes of
$R \times S$ under$\sim$ - Addition of
$(a, b), (c, d) \in R \times S$ , is$(a, b) + (c, d) = (ad + bc, bd)$ , i.e$\frac{a}{b} + \frac{c}{d} = \frac{ad + cd}{bd}$ - Multiplication of
$(a, b)(c, d) = (ac, bd)$ - additive / multiplicative identities inferred
$(0, 1), (1, 1)$ , and$-(a, b) = (-a, b)$
- Addition of
- Also denote ring of fractions as
$S^{-1}R$ - Let
$S \subset R$ be a multiplicative subset of$R$ (comm. ring), then$S^{-1}R$ is a commutative ring. If$R$ is an integral domain, then so is$S^{-1}R$ . If$S = R/{0}$ , and$R$ is ID, then$S^{-1}R$ is a field- operations are well-defined
-
addition - Arithmetic
- I.e if
$(a_1, b_1) \sim (c_1, d_1) \land (a_2, b_2) \sim (c_2, d_2) \rightarrow (a_1, b_1) + (a_2, b_2) \sim (c_1, d_1) + (c_2, d_2)$
- I.e if
-
multiplication - Arithmetic
- Similar as above
-
addition - Arithmetic
- Show that
$S^{-1}R$ is commutative- Fix
$(a,b), (c,d) \in S^{-1}R$ , then,$ad + bc \in R$ , and$bd \in S$ , (apply comm.) - Consider
$(a,b)(c,d) = (ac, bd) = (ca, db) = (c,d)(a,b)$ (thus$S^{-1}R$ is comm.)
- Fix
- Suppose
$R$ is ID, fix$(a, b), (c, d) \in S^{-1}R$ , where$(a,b)(c,d) = 0$ , then$(ac, bd) = (0, s), s \in S$ , thus$ac = 0$ , and either$a = 0$ , or$c = 0$ , WLOG$a = 0$ , thus$(a, b) = (0, b) = 0$ , and$S^{-1}R$ is ID - Suppose
$R$ is ID (then$S^{-1}R$ is ID), and$S = R\backslash {0}$ , fix$(a, b) \in S^{-1}R$ , then$(b, a) \in S^{-1}R$ , and$(a,b)(b,a) = (ab, ab) = 1$ , and$S^{-1}R$ is a field
- operations are well-defined
- Is
$R \subset S^{-1}R$ ? Consider$f : R \rightarrow S^{-1}R$ , where$f(a) = (a, 1)$ , then$f$ is HM. If$S$ has no zero divisors, then$f$ is MM, and$R$ is embedded in$S^{-1}R$ -
$R$ (comm. ring) can be embedded in its complete ring of fractions,$S^{-1}R$ , where$S$ is all non-zero divisors in$R$ (not necessarily ID) - An integral domain can be embedded in its quotient field
-
- Proofs
- Notice
$0 \in R, f(0) = (0, 1) = 0_{S^{-1}R}$ ,$1 \in R, f(1) = (1, 1) = S^{-1}R$ , for$a, b \in R, f(a + b) = (a + b, 1) = (a, 1) + (b, 1) = f(a) + f(b)$ ,$f(ab) = (ab, 1) = (a, 1)(b, 1) = f(a)f(b)$ - If
$S$ has no zero divisors$f$ is MM- Suppose
$a \in ker(f)$ , then$f(a) = (0, 1)$ , then for$s \in S, s(a) = 0$ , thus$a= 0$ , and$ker(f) = {0}$ thus$f$ is MM
- Suppose
- Notice
- The quotient field
$F$ of$R$ is the smallest field containing$R$ -
problems
- If
$D$ is an integral domain, and is a field, then what is the quotient field of$D$ - Let
$F$ be the QF for$D$ , then$D \subset F$ , however,$D \subset D$ , and is a field, thus$F \subset D$ , and$D = F$ , thus$D = F$
- Let
- If
$D$ is$F[X]$ of all poly. over$F$ , what is QF of$D$ -
$F \equiv S^{-1}D$ , where$S = D \backslash {0}$
-
- Let
$R$ be ID, with QF$F$ , and let$h : R \rightarrow L$ where$L$ is a field, show that$H$ has unique extension to MM from$F \rightarrow L$ - Suppose
$(a, b) \in F$ , then$\phi(a, b) = f(a)f(b)^{-1} \in L$ - HM, fix
$1 \in F$ , i.e$(s, s)$ , then$\phi(s, s) = f(s)f(s)^{-1} = 1$ (notice$f(s)^{-1}$ exists in$L$ ), similarly for$0 = (0, s) \in F, \phi(0, s) = f(0)f(s)^{-1} = 0$ , fix$(a, b), (c, d) \in F$ , then$\phi((a, b) + (c,d)) = \phi((ad + bc, bd)) = f(ad + bc)f(bd)^{-1} = (f(a)f(d) + f(b)f(c))f(b)^{-1}f(d)^{-1} = f(a)f(b)^{-1} + f(c)f(d)^{-1} = \phi(a, b) + \phi(c,d)$ , multiplication follows - MM
- Suppose
$(a, b) \in ker(\phi)$ , then$f(a)f(b)^{-1} = 0$ , thus$f(a) = 0 \lor f(b)^{-1} = 0$ , and$a = 0$ , thus$(a, b) = (0, b) = 0$
- Suppose
- Uniqueness
- HM, fix
- Suppose
- Let
$S \subset R$ be a MS. where$f : R \rightarrow S^{-1}R$ ,$f(a) = (a, 1)$ . If$g : R \rightarrow R'$ is HM, where$s \in S, g(s)$ is a unit in$R'$ , find$\overline{g} : S^{-1}R \rightarrow R'$ , where$\overline{g}(f(a)) = g(a), a \in R$ - Show that there is only one
$\overline{g}$ $\overline{g}((a, b)) = \overline{g}((a, 1))\overline{g}((b, 1))^{-1} = g(a)g(b)^{-1}$
- Show that there is only one
- If
- Let
- Given
-
Irreducible Polynomials
-
irreducible poly - Let
$R[X]$ be a poly. ring, and for$f \in R[X]$ , then$f$ is irreducible iff$f$ cannot be factored into two non-units- If
$R$ is a field, then$deg(g), deg(h) > 0$ , otherwise,$f = gh$ , where$g, h$ is a unit, if$f$ can be factored into$f = gh, 0 < deg(g) , deg(f)$ (same for$h$ ) then$f$ is irreducible
- If
-
Let
$D$ be a UFD, and$F$ is QF of$D$ , and$f \in D[X]$ , where$f = gh, g,h \in F[X]$ , then$\exists \lambda \in F$ , where$\lambda g \in D[X], \lambda^{-1}h \in D[X]$ , and if$f \in D[X]$ is factorable in the QF$F$ , it is also factorable in$D[X]$ - Notice
$g = \Sigma_i a_i, a_i \in F, a_i = p/q, p, q \in D$ , thus for$g, h$ consider the lcm of their coeffs$a, b$ , where$g^* = ag \in D[X], h^* = bh \in D[X]$ , and$cf = abfg \in D[X]$ , notice, that for$c = up_1 \cdots p_n$ ,$p_i | g$ , thus$f = g_0 h_0$ , where$g = \lambda g_0$ , thus$h = \lambda^{-1}h_0$
- Notice
-
content - The gcd of coefficients of polynomials
-
Let
$f, g \in D[X]$ , where$D$ in a unique factorization domain, then$c(fg) = c(f)c(g)$ - Notice
$fg = c(fg)f''g''$ , similarly,$fg = c(f)c(g)f'g'$ , and$c(f)c(g) | fg$ , similarly,$c(fg) | fg$ , thus via the above result,$c(fg) | c(f)c(g) a_i$ , and$c(fg) = c(f)c(g)$
- Notice
-
If
$h$ is non-constant poly. in$D[X]$ , and$h = ah^*$ is prim. and$a \in D$ , then$c(h) = a$ - Notice,
$c(h) = c(a)c(h^*) = a 1$
- Notice,
-
Let
$D$ be UFD, where$F$ is QF, if$f \in D[X]$ , then$f$ is IRD over$D$ iff,$f$ is prim. + IRD over$F$ - Forward - Suppose
$f$ is IRD in$D[X]$ , and$f$ is not IRD in$f$ , then,$f$ is not IRD in$D$ (apply above) - Reverse - Follows naturally,
$D \subset F$
- Forward - Suppose
-
If
$R$ is UFD, then so is$R[X]$ - Take
$F$ to the QF of$R$ , then$f \in R[X] \subset F[X]$ , where$f = uf_1\cdots f_k$ ($F[X]$ is ED -> UFD), where$f_i$ is irreducible in$F$ , notice, taking$g = (f_2\cdots f_k)f_1$ , one that that$f_1 = \lambda f_1' \in R[X] < deg(f), \lambda \in R$ , (similarly for$f_2\cdots f_k$ ), thus$f$ is factorable into IRD poly. in$R[X]$ - Uniqueness
- Suppose that
$f = f_1 \cdots f_k = g_1 \cdots g_m$ , notice$g_i | f \rightarrow g_i | f_j$ for some$f_j$ ,
- Suppose that
- Take
-
Eisenstein Irreducibility Criterion
- Let
$R$ be UFD with QF$F$ , and let$f(X) = a_nX^n + \cdots a_0 \in R[X]$ , where$n \geq 1$ ,$a_n \not = 0$ , if$p$ is prime in$R$ , and$p| a_i, 0 \leq i < n$ , but$p \not | a_n$ , and$p^2 \not | a_0$ , then$f$ is IRD over$F$ - Can assume that
$f = c(f)f^*$ , where if$p | c(f) \rightarrow p | f$ , thus we may take$f$ to be a prim. poly in$R[X]$ . Suppose$f = gh$ , where$g = g_0 + g_1 x + \cdots g_r x^r$ , and$h = h_0 + h_1 x + \cdots h_r x^r$ , then$r = 0$ implies that$f = g_0h$ , thus$g_0 | c(f) = 1$ , thus and$f$ is IRD ($g_0$ is a unit in$F$ ). Thus$deg(g) \geq 1, deg(h) \geq 1$ , consider$a_0 = g_0 h_0$ , then$p | a_0 \rightarrow p | g_0 \lor p | h_0$ (but not both,$p^2 \not | a_0$ ), WLOG,$p \not | h_0$ , then$\forall a_i = h_0 g_i + \cdots \rightarrow p | g_i, 0 \leq i < n$ , notice$a_n = g_r h_s$ , however,$p | g_r \rightarrow p | a_n$ (contradiction).
- Can assume that
- Let
-
problems
-
rational root test - Let
$f(X) = a_nX^n + \cdots + a_1X + a_0 \in \mathbb{Z}[X]$ . If$f$ has a rational root$u/v$ , where$gcd(u,v) = 1$ , show that$v | a_n$ , and$u | a_0$ -
$u | a_0$ - Notice$a_0 v^n = - (a_n u^n + a_{n - 1}u^{n-1}v + \cdots + a_1 u v^{n-1})$ ($u$ divides left), thus$u | a_0 v^n \rightarrow u | a_0$ - Similar case holds that
$v | a_n$
-
- Show that for every positive integer
$n$ . there is at least one IRD poly of degree$n$ over the integers- Use eisenstein to construct? I.e
$f(x) = p + px + \cdots px^{n-1} + qx^n$
- Use eisenstein to construct? I.e
- If
$f(X) \in \mathbb{Z}[X]$ and$p$ is prime, reduce co-effs$p$ to obtain new poly.$f_p(X) \in \mathbb{Z}_p[X]$ . If$f$ is factorable over$\mathbb{Z}$ , then$f_p$ is factorable over$\mathbb{Z}_p$ - Use above to show that
$X^3 + 27X^2 + 5X + 97$ is IRD over$\mathbb{Z}$ - Consider over
$\mathbb{Z}_3$ must have linear factor (degree is odd, i.e$f(1) = 0 \lor f(2) = 0$ )
- Consider over
- Show that
$\langle n, X \rangle, n \geq 2$ is not principal, and$\mathbb{Z}[X]$ is not PID (but is UFD)- Notice
$\langle n, X \rangle$ is maximal, i.e set of$f(X) \in \mathbb{Z}[X]$ where$2 | a_0$ , thus if
- Notice
- If
$F$ is field, then$F[X, Y]$
-
rational root test - Let
- Suppose
$\phi : R \rightarrow R'$ is isomorphism, and all variables involved in construction (apart from input) are bound, then$R = R$ -
extensions
-
$R \subset R'$ , and$\phi : R \rightarrow R', \phi(x) = x$ (inlcusion) is a ring-map, and is injective.
-
-
$R$ -algebra- Given
$R'$ , and a ring map$\phi : R \rightarrow R'$ - All rings are
$\mathbb{Z}$ -algebras
- Given
- Let
$F$ be a field, then$F[X]$ is a euclidean domain, take$\phi : F[X] \rightarrow \mathbb{Z} := deg$ , then use euclidean alg.$p, q \in F[X]$ , where$deg(p) > deg(q)$ , then$p = aq + r$ , where$a_n = q_n^{-1}p_n$ (and$n$ is index of leading coeff in$q$ ), and$deg(r) < deg(p)$ - Implies that
$F[X]$ is PID$\rightarrow$ UFD (every$p \in F[X]$ can be written as product of IRDs)
- Implies that
-
field - Commutative ring with identity, where
$S \subset F\backslash{0}$ is multiplicative grp. -
extension -
$K \supseteq F$ is a field-extension, and can be treated as a vector-space over$F$ ,$E/F$ ,$E \leq F$ - Let
$f : F \rightarrow E$ be HM of fields, then$f$ is ring HM (thus inverses are preserved), then$f$ is MM- notice
$ker(f)$ is ideal of$F$ , thus$ker(f) = {0}$ or$ker(f) = F$ , notice$1_F \not \in ker(f)$ thus$ker(f) = {0}$
- notice
- Let
$f \in F$ be non-constant poly. Then there is$E, F \leq E$ , and$\alpha \in E$ , where$f(\alpha) = 0$ - Consider
$F[X]/ \langle f \rangle$ , where$F \cong F' \subset F[X]/\langle f \rangle$ (take$a \in F, a + f \in F[X]$ , i.e$a_0' = a + a_0$ ), then $a, b \in F, (a + f)(b + f) = \Sigma_i \Sigma_{0 \leq j \leq i} (a + f)j(b + f){i - j}, a_0' = (a + f)_0 (b + f)_0$ - Take
$X + f \in F[X]/\langle f \rangle$ , then$f(X + f) = \Sigma a_i (X + f) = \Sigma a_i X^i + \Sigma a_i f^i = f + I = I$ , and$\alpha = X + f \in F[X]/\langle f \rangle$ is root
- Consider
-
$f, g \in F[X]$ . Then$f$ and$g$ are relatively prime iff$f,g$ have no common root in any$E/F$ - Forward - Suppose
$f, g$ are relatively prime, then$a(X), b(X) \in F[X], a(X)f(X) + b(X)g(X) = 1$ , (constant, but$f, g$ share a root) - Reverse - Suppose
$f, g$ are not relatively prime, then$\langle f , g \rangle = \langle h \rangle$ , then take$E$ to be the extension field where$h$ 's root exists,
- Forward - Suppose
- If
$f,g$ are monic IRD poly. over$F$ , then$f, g$ have no common roots in any extension of$F$ -
$F[X]$ is UFD, thus$f, g$ prime, and are relatively prime, thus above result holds
-
-
Extensions
- Suppose
$F$ is field,$E \geq F$ , and$f \in F[X]$ , where$\alpha \in E, f(\alpha) = 0$ , consider the field$F[\alpha]$ (i.e smallest sub-field of$E$ where$f$ has a root) - If
$E/F$ and$\alpha \in E$ ,$\alpha$ is algebraic over$F$ , if$\exists f \in F[X], f(\alpha) = 0$ , otherwise$\alpha$ is transcendental, if every element of$E$ is algebraic over$F$ then$E$ is an algebraic extension of$F$ - Let
$\alpha \in E$ , where $ \alpha$ is transcendental over$F$ , then$I = {f(x) : f(\alpha) = 0} \subset F[X]$ is an ideal (closed under addition / scalar multiplication in$F$ ), thus$I = \langle g \rangle$ - Notice, generators unique up to multiplication by associates in
$F[X]$ (field elements), thus choose monic - If
$g \in F[X]$ ,$g(\alpha) = 0 \iff m(X) | g(X)$ - Forward -
$g \in \langle m \rangle$ - Reverse - Triv.
$g(X) = c(X)m(X) \rightarrow g(\alpha) = c(\alpha)m(\alpha)$
- Forward -
-
$m(X)$ is monic poly. of least degree such that$m(\alpha) = 0$ - Suppose that
$l(\alpha) = 0$ , then$l \in \langle m \rangle$ , and$deg(l) = deg(pm) = deg(p) + deg(m) \geq deg(m)$
- Suppose that
-
$m(X)$ is unique MIRD poly. where$m(\alpha) = 0$ - Notice, if
$m' \in \langle m \rangle$ , then$m' = cm$ (where$c$ must be an associated$m'$ is IRD), thus if$m'$ is monic$c = 1$ and$m = m'$ - Notice
$m$ IRD, as$m(X) = k(X)h(X)$ , where$0 < deg(k) < deg(m) \land 0 < deg(h) < deg(m)$ , however$0 = m(\alpha) = h(\alpha)k(\alpha)$ , and$F$ is an IRD, thus$h(\alpha) = 0 \lor k(\alpha) = 0$ , and WLOG$h \in \langle m \rangle \rightarrow deg(h) \geq deg(m)$ (contradiction)
- Notice, if
- Notice, generators unique up to multiplication by associates in
- Intuition, is
$E$ , the extension of$F$ , where$E = F[\alpha_1, \cdots, \alpha_n]$ , where for some$f \in F[X], f(\alpha_i) = 0$ ,$E \cong F[X]/ \langle f \rangle$ -
definition -
$F(\alpha)$ is the set of all$\frac{a_0 + a_1 \alpha + \cdots + a_n \alpha^n}{b_0 + \cdots b_m \alpha^m}$ (i.e smallest field containing$F \cup \alpha$ - If
$\alpha \in E$ is alg. over$F$ , and$m$ is min. poly. of$\alpha$ over$F$ , where$deg(m) = n$ , then$F(\alpha) = F[\alpha]$ , and$1, \alpha, \cdots, \alpha_n$ form basis of$E$ over$F$ , thus$[E : F] = n$ - Show that
$F[\alpha] \subset F(\alpha)$ -
$F[\alpha]$ is a field- take
$f \in F[X] \backslash \langle m \rangle$ , notice,$m \in F[X]$ is IRD, and thus$f, m$ are relatively prime, and$a(X)f(X) + b(X)m(X) = 1$ , thus$a(\alpha)f(\alpha) + b(\alpha)m(\alpha) = a(\alpha)f(\alpha) = 1$ , where$f(\alpha) \in F[\alpha]$ and$F[\alpha]$ is a field - Otherwise
$f \in \langle m \rangle$ , and$f(\alpha) = 0$
- take
-
$F[\alpha] \cong F[X]/\langle m \rangle$ ? -
$F[\alpha] \subset F(\alpha)$ - This follows naturally, where the denominator is
$1$
- This follows naturally, where the denominator is
- Thus since
$\alpha \in F[\alpha] \land F \subset F[\alpha]$ , then$F(\alpha) \subset F[\alpha]$ , and$F[\alpha] = F(\alpha)$ - Notice
$F[\alpha]$ is the span of$1, \alpha, \cdots, \alpha^{n - 1}$ ,- Suppose
$\exists b_0, \cdots, b_n$ , where$0 = b_0 \alpha + \cdots + b_{n- 1} \alpha$ , then$f = \Sigma_{n - 1} b_i \alpha^i \in \langle m \rangle$ , where$deg(f) < deg(m)$ (contradiction)
- Suppose
-
- Show that
- Suppose
-
Degree is Multiplicative
- Suppose
$F \leq K \leq E$ are extensions, and$\alpha_i$ form basis of$E$ over$K$ , and$\beta_i$ form basis of$K$ over$F$ , then$\alpha_i \beta_j$ form basis of$E$ over$F$ - Fix
$a \in E$ , then$a = \Sigma_i a_i \alpha_i = \Sigma_i \Sigma_j b_j \beta_j \alpha_i, b_j \in F$ (notice$a_i \in K$ ) -
$\alpha_i \beta_j$ are linearly independent- Suppose
$\Sigma_i \alpha_i \Sigma_j a_{ij}\beta_j = 0$ , then for each$i$ ,$\Sigma_j a_{ij} \beta_j = 0$ , thus$a_{ij} = 0$ , and$\alpha_i \beta_j$ are lin. ind.
- Suppose
- Fix
- As a corollary to the above,
$[E : F] = [E : K][K : F]$
- Suppose
- If
$E$ is a finite extension of$F$ , then$E$ is algebraic extension of$F$ - Suppose
$[E : F] = n$ , then$\alpha \in E$ ,$(1, \alpha, \cdots, \alpha^n)$ is linearly dependent, thus$a_0 + \cdots + a_n \alpha^n = 0$ , and$f(x) = \Sigma_i a_i X^i \in F[X]$
- Suppose
-
problems
- Let
$E$ be an extension of$F$ , and$S \subset E$ . If$F(S)$ is the SF of$E$ generated by$S$ over$F$ , i.e the smallest field$F' \supset F \cup S$ - Let
$m_s$ be the min. poly. for$s_i \in S$ , then$[F(S) : F] = \Pi_s deg(m_s) - |S| + 1$
- Let
- Assume that
$\alpha$ is algebraic over$F$ , with$[F[\alpha] : F] = n$ , show that$[F[\beta] : F] | [F[\alpha] : F]$ - Notice
$F[\beta] \subset F[\alpha]$ ,$\beta = a_0 + \cdots a_{n-1}\alpha^{n-1}$ , thus$[F[\alpha] : F] = [F[\alpha] : F[\beta]][F[\beta] : F]$
- Notice
- The minimal poly. of
$\sqrt{2}$ over$\mathbb{Q}$ is$X^2 - 2$ , thus$\mathbb{Q}[\sqrt{2}] = {a_0 + \sqrt{2} a_1: a_0, a_1 \in \mathbb{Q}}$ , then minimal poly of$\beta = -1 + \sqrt{2} \in \mathbb{Q}[\sqrt{2}]$ has deg at most 2, find the poly.$x^2 + 2x - 1$
- If
$E/F$ , and$\alpha \in E$ is transcendental over$F$ , show that$F(\alpha)$ is iso-morphic to$F(X)$ - MM from
$F(\alpha) \rightarrow F(X)$ (naturally exists) - MM from
$F(X) \rightarrow F(\alpha)$ ?- Suppose
$\phi : F(X) \rightarrow F(\alpha)$ , where$\phi(f/g) = f(\alpha)/g(\alpha)$
- Suppose
- MM from
- If
$E/F$ , and$\alpha \in E$ is algebraic over$F$ , where$m \in F[X]$ is min. poly. let$I = \langle m \rangle$ , show that$F(\alpha) \cong F[X]/I$ - Consider
$\phi : F[X] \rightarrow F(\alpha)$ , where$\phi(f) = f(\alpha)$ , then$ker(\phi) = \langle m \rangle$ , thus$F[X] / \langle m \rangle \cong F(\alpha)$
- Consider
- If
$f$ is IRD in$F[X]$ , then$I = \langle f \rangle$ is maximal. Show conversely, that if$I$ is a maximal ideal, then$f$ is IRD.- Suppose
$I = \langle f \rangle$ , consider$f = gh$ , then (WLOG),$\langle f \rangle \subset \langle g \rangle$ , where$g$ is not a unit, but$\langle f \rangle \supset \langle g \rangle$ , and$f, g$ are associates
- Suppose
- Suppose
$F \leq E \leq L$ , with$\alpha \in L$ , what is relation of min. poly of$\alpha$ over$F$ and over$E$ ?- Notice
$E[\alpha] \supset F[\alpha] \supset F$ , and$E[\alpha] \supset E \supset F$ , thus express$[E[\alpha] : F]$ in two ways, and compare - i.e
$[F[\alpha] : F] | [E[\alpha] : E]$ - Alternative, let
$m \in F[X]$ be the min. poly. of$\alpha$ in$F[X] \subset E[X]$ , then consider$I$ the ideal of all$f \in E[X]$ , where$f(\alpha) = 0$ , then$I = \langle m' \rangle, m \in \langle m' \rangle \rightarrow m' | m$
- Notice
- Suppose
$\alpha_1, \cdots, \alpha_n$ are algebraic over$F$ , show that$[F[\alpha_1, \cdots, \alpha_n] : F] \leq \Pi_i [F[\alpha_i] : F] < \infty$ - Apply above thm + use induction on
$\alpha_i$ holds for 1, then for$[F[\alpha_1 \cdots \alpha_{n + 1}] : F] = [F[\alpha_1 \cdots \alpha_{n+1}] : F[\alpha_1, \cdots, \alpha_n]][F[\alpha_1, \cdots,\alpha_n] : F]$ , take$E = F[\alpha_1, \cdots, \alpha_n]$ , then$[F[\alpha_1, \cdots, \alpha_{n + 1}] : F] = [F[\alpha_1, \cdots, \alpha_{n + 1}] : F[\alpha_1, \cdots, \alpha_n]][F[\alpha_1, \cdots, \alpha_n] : F] = [E[\alpha_{n + 1}] : E][E : F]$ , apply thm. above to obtain$[E[\alpha_{n + 1}] : E] | [F[\alpha_{n + 1}] : F]$
- Apply above thm + use induction on
- Let
- Let
$E \geq F$ , and$f \in F[X]$ , then$f$ splits over$E$ , if$f = \lambda(x - \alpha_1) \cdots (x - \alpha_n)$ , where$\alpha_i \in E, \lambda \in F$ - If
$K \geq F$ , and$f$ splits over$K$ , but does not split over any sub-field of$K$ , then$K$ is the splitting field of$f$ - If
$f \in F[X]$ and$deg(f) = n$ , then$f$ has a splitting field$K$ over$F$ , with$[K : F] \leq n!$ - Notice,
$f$ has$n$ roots, thus, for$\alpha_1, f(\alpha_1) = 0 = \Sigma_{0 \leq i \leq n} a_i \alpha^i$ , and$[F[\alpha_1] : F] = n$ , next consider,$[F[\alpha_2, \alpha_1] : F[\alpha_1] = n - 1$ (consider $f / (X - \alpha_1)$), and$F[\alpha_1, \cdots, \alpha_n] = [F[\alpha_1, \cdots, \alpha_n] : F[\alpha_1, \cdots, \alpha_{n - 1}]\cdots [F[\alpha_1] : F]$
- Notice,
- If
$\alpha, \beta \in E$ are roots of$f \in F[X]$ , then$F(\alpha) \cong F(\beta)$ - Consider
$\phi : F(\alpha) \rightarrow F(\beta)$ , where$f(\alpha) \in F(\alpha), \phi(f(\alpha)) = f(\beta)$ (it is the id. on$F$ ) - Let
$I \subset F[X]$ be the ideal of poly. with root$\alpha$ , and$J$ for$\beta$ , notice$f \in I \land f \in J$ , furthermore,$I = \langle f \rangle = J$ ($f$ is IRD, if not generator,$f' | f$ ), thus$F[X]/I \cong F(\alpha)$ , and$F[X]/J \cong F(\beta)$
- Consider
-
Isomorphism Extension Theorem
- Suppose that
$F, F'$ are IM fields, and$i$ carries$f \in F[X] \rightarrow f' \in F'[X]$ , if$K$ is splitting field for$f$ over$F$ , and$K'$ is splitting field for$f'$ over$F'$ , then$K \cong K'$ - Triv.
- Suppose that
-
problems
- What is degree of splitting field
$K$ of$\mathbb{Q}$ of$X^2 - 2X + 4$ - Suppose
$K' \subset K$ , is a sub-field of$K$ in which$X^2 - 2X + 4$ has roots, then$[K' : \mathbb{Q}] | [K : \mathbb{Q}]$ thus$[K' : \mathbb{Q}]$ must be$1 \lor 2$ (simple analysis shows$2$ )
- Suppose
- Find splitting field
$K$ for$X^4 - 2$ over$\mathbb{Q}$ , and determine$[K : \mathbb{Q}]$ (4, 2, 1), degree is$2$ - Let
$\mathcal{C}$ be family of poly. over$F$ , and$K/F$ , show that the following two conditions are equivalent- Each
$f \in \mathcal{C}$ splits over$K$ , but if$F \leq K' \leq K$ , then it is not true that each$f \in \mathcal{C}$ splits over$K'$ - Each
$f \in \mathcal{C}$ splits over$K$ , and$K$ is generated over$F$ by the roots of all poly. in$\mathcal{C}$ - Forward -
- Suppose the first condition is held, then if
$f_i \in \mathcal{C}, f = \lambda_i(X - \alpha_{i1}) \cdots (X - \alpha_{in})$ , then,$K_i = F(\alpha_{i1}, \cdots, \alpha_{in}) \subset K$ ($f_i$ splits in$K$ ), similarly, if$K' \subset K = F(\alpha_{11}, \cdots, \alpha_{nn})$ , then one of the$f_i$ is not fully split.
- Suppose the first condition is held, then if
- Reverse - Triv.
- Forward -
- Each
- SUppose
$K$ is a splitting field for the finite set of poly.${f_1, \cdots, f_n}$ , notice, for each$f_i \in F$ ,$\cap_i \langle f_i \rangle = \langle m \rangle$ , then the splitting field of$f_i$ is the splitting field of$m$ ,- Let
$K$ be a splitting field for$m$ , then$m = \lambda f_1 \cdots f_n$
- Let
- If
$m,n$ are distinct square-free integers, greater than 1, show that the splitting field,$\mathbb{Q}(\sqrt{m}, \sqrt{n})$ of$(X^2 - m)(X^2 - n)$ has deg. 4 over$\mathbb{Q}$ - Must have at least deg
$2$
- Must have at least deg
- What is degree of splitting field
-
Algebraic Closures
- If
$C$ is a field, the following are equivalent- for all
$f \in C[X]$ ,$f$ has at least one root in$C$ - All
$f \in C[X]$ splits in$C$ - Every irreducible poly. in
$C$ is linear -
$C$ has no proper algebraic extensions
- for all
- Proofs
-
$1 \rightarrow 2$ - Fix
$f \in C[X]$ , then$\alpha \in C, f(X) = g(X)(X - \alpha), g(X) \in C[X]$ , and continue until$f$ splits
- Fix
-
$2 \rightarrow 3$ - Fix
$f \in C[X]$ , Then if$deg(f) > 1$ ,$f$ splits, and$f$ is not IRD.
- Fix
-
$C/F$ ,$C$ has no proper algebraic extensions- Let
$E \geq C$ , be an AE of$F$ , then take$\alpha \in E$ , notice,$\exists f \in F[X]$ , where$f(\alpha) = 0$ , take$I = {f(\alpha) = 0: f \in C[X]}$ , then$\langle I \rangle = \langle m \rangle$ where$m$ is IRD, but$deg(m) = 1$ , thus$\alpha \in C$
- Let
-
$4 \rightarrow 1$ - Suppose
$C$ has no proper AEs, then fix$f \in C[X]$ , where$f$ has no roots in$C$ , then take$E$ to be the min. extension of$C$ where$f$ has a root, thus$E \geq C \land C \not = E$ (contradiction)
- Suppose
-
-
definitions
- If
$C$ is a field, and any (thus all) of the above properties hold, then$C$ is algebraically closed - If any field extension
$C/F$ satisfies the above properties and is algebraic over$F$ , then$C$ is the algebraic closure of$F$
- If
- If
$E/F$ , and$A \subset E$ , where$a \in A$ is algebraic over$f$ , then$A$ is a field, i.e$A = \overline{F}\cap E$ - Notice,
$0, 1 \in A$ , fix$a, b \in A$ , then consider$F(\alpha, \beta)$ , where$[F(\alpha, \beta) : F] = 2$ (finite, extension), and is thus algebraic over$F$ , therefore$F(\alpha, \beta) \subset A$ , thus the product, sum, difference, and fraction are in$A$
- Notice,
- If
$E$ is algebraic over$K$ , and$K$ is algebraic over$F$ , then$E$ is algebraic over$F$ - Fix
$\alpha \in E$ , then$f \in K[X], f = \Sigma a_i X^i$ has$\alpha$ as a root, and$a_i \in K$ , consider$K = F(a_1, \cdots, a_n)$ , notice,$[K:F]$ is finite ($a_i$ is algebraic over$F$ ), thus$K$ is algebraic over$F$ , furthermore,$[K[\alpha] : K] = n$ , thus$[K[\alpha] : F] \leq [K[\alpha] : K][K : F]$ , thus$K[\alpha]$ is algebraic over$F$ , and since$\alpha \in K[\alpha]$ ,$\alpha$ is algebraic over$F$
- Fix
- Let
$C$ be AE of$F$ . Then$C$ is AC of$F$ iff every NC poly. in$F[X]$ splits over$F$ - Forward
- Suppose
$C$ is ALC of$F$ . Then$C$ is algebraically closed, thus for$f \in F[X] \subset C[X]$ , then$f$ splits in$C$
- Suppose
- Reverse
- Suppose
$\forall f \in F[X]$ ,$f$ splits over$C$ . Fix$E \geq C$ , where$E$ is AE of$C$ , then fix$\alpha \in E$ , then by above, there exists$m \in F[X]$ (min. poly.), where$m(\alpha) = 0$ , however,$m$ splits over$C$ , thus$\alpha \in C$ , thus$E \subset C$ , and$E = C$ , thus$C$ is algebraically closed.
- Suppose
- Forward
-
problems
- Suppose
$E \geq F$ , where$[E:F] = n$ , then$E$ is generated by finitely many elements that are algebraic over$F$ - Triv.
- Show that there are countably many numbers that are algebraic over
$\mathbb{Q}$ - Let
$\alpha \in \mathbb{C}$ , where$f \in \mathbb{Q}[X]$ such that$f(\alpha) = 0$ , then take$f' = \beta f \in \mathbb{Z}[X]$ , where$\beta$ is the lcm of the denominators in$f$ , thus there are countably many of such polynomials$f'$
- Let
-
Give example of
$C / F$ , where$C$ is AC but not AE of$F$
- Suppose
- If
- Let
$a \in \mathbb{Z}$ , then$ord_p(a) = n \iff p^n | a \land p^{n + 1} \not | a$ - If
$a, b \in \mathbb{Z}$ , then$\exist q, r \in \mathbb{Z}$ where$r < b$ ,- Fix
$a, b \in \mathbb{Z}$ , where WLOG$a > b$ , then let$S = {x = a - pb > 0: p \in \mathbb{Z}}$ , notice$a \in S$ thus$S$ is non-empty, fix$r = min( S)$ , if$r = a - pb \geq b$ , then$r' = a - (p + 1)b < r \in S$ , contradiction, thus$r < b$
- Fix
- Suppose
$a | bc$ and$(a, b) = 1$