Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix/operations #67

Merged
merged 5 commits into from
Feb 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
238 changes: 204 additions & 34 deletions python/test/math/Test_scion_math_InterpolationTable.py

Large diffs are not rendered by default.

4 changes: 4 additions & 0 deletions src/scion/math/InterpolationTable/src/evaluateOnGrid.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,10 @@ std::vector< Y > evaluateOnGrid( const std::vector< X >& x ) const {
std::vector< Y > y( x.size(), Y( 0. ) );

auto xIter = std::lower_bound( x.begin(), x.end(), this->x().front() );
if ( *std::next( xIter ) == this->x().front() ) {

++xIter;
}
auto yIter = std::next( y.begin(), std::distance( x.begin(), xIter ) );

auto xTable = this->x().begin();
Expand Down
2 changes: 0 additions & 2 deletions src/scion/math/InterpolationTable/src/generateTables.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,6 @@ void generateTables() {

auto xStart = this->x().begin();
auto yStart = this->y().begin();
auto xEnd = xStart;
auto yEnd = yStart;
std::size_t nr = this->boundaries().size();
bool linearised = true;
for ( std::size_t i = 0; i < nr; ++i ) {
Expand Down
33 changes: 15 additions & 18 deletions src/scion/math/InterpolationTable/src/operation.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -33,30 +33,27 @@ InterpolationTable& operation( const InterpolationTable& right,
}
else {

// check for threshold tables
if ( this->x().front() != right.x().front() ) {

Y ystart = this->x().front() < right.x().front() ? right.y().front()
: this->y().front();

if ( Y( 0. ) != ystart ) {

X xstart = this->x().front() < right.x().front() ? right.x().front()
: this->x().front();

Log::error( "The threshold table's first y value is not zero" );
Log::info( "Found x = {}", xstart );
Log::info( "Found y = {}", ystart );
throw std::exception();
}
}

// unionise and evaluate on the new grid
std::vector< X > x = unionisation::unionise( this->x(), right.x() );
std::vector< Y > y = this->evaluateOnGrid( x );
std::vector< Y > temp = right.evaluateOnGrid( x );
std::transform( y.begin(), y.end(), temp.begin(), y.begin(), operation );

// check for threshold jump with the same y value
if ( this->x().front() != right.x().front() ) {

X value = this->x().front() < right.x().front() ? right.x().front()
: this->x().front();
auto xIter = std::lower_bound( x.begin(), x.end(), value );
auto yIter = std::next( y.begin(), std::distance( x.begin(), xIter ) );
if ( *std::next( yIter ) == *yIter ) {

x.erase( xIter );
y.erase( yIter );
}
}

// replace this with a new table
*this = InterpolationTable( std::move( x ), std::move( y ) );
}

Expand Down
6 changes: 6 additions & 0 deletions src/scion/math/InterpolationTable/src/processBoundaries.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,12 @@ processBoundaries( const std::vector< X >& x, const std::vector< Y >& y,
}

auto xIter = std::adjacent_find( x.begin(), x.end() );
if ( xIter == x.begin() ) {

Log::error( "A jump in the x grid cannot occur at the beginning of the x grid" );
throw std::exception();
}

auto bIter = boundaries.begin();
auto iIter = interpolants.begin();
while ( xIter != x.end() ) {
Expand Down
219 changes: 205 additions & 14 deletions src/scion/math/InterpolationTable/test/InterpolationTable.test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ SCENARIO( "InterpolationTable" ) {
InterpolationTable< double > result( { 1., 4. }, { 0., 0. } );
InterpolationTable< double > same( { 1., 4. }, { 0., 3. } );
InterpolationTable< double > threshold( { 2., 4. }, { 0., 2. } );
InterpolationTable< double > nonzerothreshold( { 2., 4. }, { 1., 2. } );
InterpolationTable< double > nonzerothreshold( { 2., 4. }, { 1., 3. } );
InterpolationTable< double > small( { 1., 3. }, { 0., 2. } );

chunk += 2.;
Expand Down Expand Up @@ -492,6 +492,98 @@ SCENARIO( "InterpolationTable" ) {
CHECK( InterpolationType::LinearLinear == result.interpolants()[0] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( result.domain() ) );

chunk += nonzerothreshold;

CHECK( 5 == chunk.numberPoints() );
CHECK( 2 == chunk.numberRegions() );
CHECK( 5 == chunk.x().size() );
CHECK( 5 == chunk.y().size() );
CHECK( 2 == chunk.boundaries().size() );
CHECK( 2 == chunk.interpolants().size() );
CHECK_THAT( 1., WithinRel( chunk.x()[0] ) );
CHECK_THAT( 2., WithinRel( chunk.x()[1] ) );
CHECK_THAT( 2., WithinRel( chunk.x()[2] ) );
CHECK_THAT( 3., WithinRel( chunk.x()[3] ) );
CHECK_THAT( 4., WithinRel( chunk.x()[4] ) );
CHECK_THAT( 4., WithinRel( chunk.y()[0] ) );
CHECK_THAT( 3., WithinRel( chunk.y()[1] ) );
CHECK_THAT( 4., WithinRel( chunk.y()[2] ) );
CHECK_THAT( 4., WithinRel( chunk.y()[3] ) );
CHECK_THAT( 4., WithinRel( chunk.y()[4] ) );
CHECK( 1 == chunk.boundaries()[0] );
CHECK( 4 == chunk.boundaries()[1] );
CHECK( InterpolationType::LinearLinear == chunk.interpolants()[0] );
CHECK( InterpolationType::LinearLinear == chunk.interpolants()[1] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( chunk.domain() ) );

chunk -= nonzerothreshold;

CHECK( 4 == chunk.numberPoints() );
CHECK( 1 == chunk.numberRegions() );
CHECK( 4 == chunk.x().size() );
CHECK( 4 == chunk.y().size() );
CHECK( 1 == chunk.boundaries().size() );
CHECK( 1 == chunk.interpolants().size() );
CHECK_THAT( 1. , WithinRel( chunk.x()[0] ) );
CHECK_THAT( 2. , WithinRel( chunk.x()[1] ) );
CHECK_THAT( 3. , WithinRel( chunk.x()[2] ) );
CHECK_THAT( 4. , WithinRel( chunk.x()[3] ) );
CHECK_THAT( 4.0, WithinRel( chunk.y()[0] ) );
CHECK_THAT( 3.0, WithinRel( chunk.y()[1] ) );
CHECK_THAT( 2.0, WithinRel( chunk.y()[2] ) );
CHECK_THAT( 1.0, WithinRel( chunk.y()[3] ) );
CHECK( 3 == chunk.boundaries()[0] );
CHECK( InterpolationType::LinearLinear == chunk.interpolants()[0] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( chunk.domain() ) );

result = chunk + nonzerothreshold;

CHECK( 5 == result.numberPoints() );
CHECK( 2 == result.numberRegions() );
CHECK( 5 == result.x().size() );
CHECK( 5 == result.y().size() );
CHECK( 2 == result.boundaries().size() );
CHECK( 2 == result.interpolants().size() );
CHECK_THAT( 1., WithinRel( result.x()[0] ) );
CHECK_THAT( 2., WithinRel( result.x()[1] ) );
CHECK_THAT( 2., WithinRel( result.x()[2] ) );
CHECK_THAT( 3., WithinRel( result.x()[3] ) );
CHECK_THAT( 4., WithinRel( result.x()[4] ) );
CHECK_THAT( 4., WithinRel( result.y()[0] ) );
CHECK_THAT( 3., WithinRel( result.y()[1] ) );
CHECK_THAT( 4., WithinRel( result.y()[2] ) );
CHECK_THAT( 4., WithinRel( result.y()[3] ) );
CHECK_THAT( 4., WithinRel( result.y()[4] ) );
CHECK( 1 == result.boundaries()[0] );
CHECK( 4 == result.boundaries()[1] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[0] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[1] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( result.domain() ) );

result = chunk - nonzerothreshold;

CHECK( 5 == result.numberPoints() );
CHECK( 2 == result.numberRegions() );
CHECK( 5 == result.x().size() );
CHECK( 5 == result.y().size() );
CHECK( 2 == result.boundaries().size() );
CHECK( 2 == result.interpolants().size() );
CHECK_THAT( 1., WithinRel( result.x()[0] ) );
CHECK_THAT( 2., WithinRel( result.x()[1] ) );
CHECK_THAT( 2., WithinRel( result.x()[2] ) );
CHECK_THAT( 3., WithinRel( result.x()[3] ) );
CHECK_THAT( 4., WithinRel( result.x()[4] ) );
CHECK_THAT( 4., WithinRel( result.y()[0] ) );
CHECK_THAT( 3., WithinRel( result.y()[1] ) );
CHECK_THAT( 2., WithinRel( result.y()[2] ) );
CHECK_THAT( 0., WithinRel( result.y()[3] ) );
CHECK_THAT( -2., WithinRel( result.y()[4] ) );
CHECK( 1 == result.boundaries()[0] );
CHECK( 4 == result.boundaries()[1] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[0] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[1] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( result.domain() ) );

// this will add a second point at the lower end point
result = chunk + small;

Expand Down Expand Up @@ -539,12 +631,6 @@ SCENARIO( "InterpolationTable" ) {
CHECK( 4 == result.boundaries()[1] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[0] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( result.domain() ) );

// the threshold table starts with a non-zero value
CHECK_THROWS( chunk += nonzerothreshold );
CHECK_THROWS( chunk -= nonzerothreshold );
CHECK_THROWS( result = chunk + nonzerothreshold );
CHECK_THROWS( result = chunk - nonzerothreshold );
} // THEN

THEN( "an InterpolationTable can be linearised" ) {
Expand Down Expand Up @@ -687,7 +773,7 @@ SCENARIO( "InterpolationTable" ) {
InterpolationTable< double > result( { 1., 4. }, { 0., 0. } );
InterpolationTable< double > same( { 1., 4. }, { 0., 3. } );
InterpolationTable< double > threshold( { 2., 4. }, { 0., 2. } );
InterpolationTable< double > nonzerothreshold( { 2., 4. }, { 1., 2. } );
InterpolationTable< double > nonzerothreshold( { 3., 4. }, { 1., 2. } );
InterpolationTable< double > small( { 1., 3. }, { 0., 2. } );

chunk += 2.;
Expand Down Expand Up @@ -1130,6 +1216,106 @@ SCENARIO( "InterpolationTable" ) {
CHECK( InterpolationType::LinearLinear == result.interpolants()[1] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( result.domain() ) );

chunk += nonzerothreshold;

CHECK( 6 == chunk.x().size() );
CHECK( 6 == chunk.y().size() );
CHECK( 3 == chunk.boundaries().size() );
CHECK( 3 == chunk.interpolants().size() );
CHECK_THAT( 1., WithinRel( chunk.x()[0] ) );
CHECK_THAT( 2., WithinRel( chunk.x()[1] ) );
CHECK_THAT( 2., WithinRel( chunk.x()[2] ) );
CHECK_THAT( 3., WithinRel( chunk.x()[3] ) );
CHECK_THAT( 3., WithinRel( chunk.x()[4] ) );
CHECK_THAT( 4., WithinRel( chunk.x()[5] ) );
CHECK_THAT( 4., WithinRel( chunk.y()[0] ) );
CHECK_THAT( 3., WithinRel( chunk.y()[1] ) );
CHECK_THAT( 4., WithinRel( chunk.y()[2] ) );
CHECK_THAT( 3., WithinRel( chunk.y()[3] ) );
CHECK_THAT( 4., WithinRel( chunk.y()[4] ) );
CHECK_THAT( 4., WithinRel( chunk.y()[5] ) );
CHECK( 1 == chunk.boundaries()[0] );
CHECK( 3 == chunk.boundaries()[1] );
CHECK( 5 == chunk.boundaries()[2] );
CHECK( InterpolationType::LinearLinear == chunk.interpolants()[0] );
CHECK( InterpolationType::LinearLinear == chunk.interpolants()[1] );
CHECK( InterpolationType::LinearLinear == chunk.interpolants()[2] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( chunk.domain() ) );

chunk -= nonzerothreshold;

CHECK( 5 == chunk.x().size() );
CHECK( 5 == chunk.y().size() );
CHECK( 2 == chunk.boundaries().size() );
CHECK( 2 == chunk.interpolants().size() );
CHECK_THAT( 1., WithinRel( chunk.x()[0] ) );
CHECK_THAT( 2., WithinRel( chunk.x()[1] ) );
CHECK_THAT( 2., WithinRel( chunk.x()[2] ) );
CHECK_THAT( 3., WithinRel( chunk.x()[3] ) );
CHECK_THAT( 4., WithinRel( chunk.x()[4] ) );
CHECK_THAT( 4., WithinRel( chunk.y()[0] ) );
CHECK_THAT( 3., WithinRel( chunk.y()[1] ) );
CHECK_THAT( 4., WithinRel( chunk.y()[2] ) );
CHECK_THAT( 3., WithinRel( chunk.y()[3] ) );
CHECK_THAT( 2., WithinRel( chunk.y()[4] ) );
CHECK( 1 == chunk.boundaries()[0] );
CHECK( 4 == chunk.boundaries()[1] );
CHECK( InterpolationType::LinearLinear == chunk.interpolants()[0] );
CHECK( InterpolationType::LinearLinear == chunk.interpolants()[1] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( chunk.domain() ) );

result = chunk + nonzerothreshold;

CHECK( 6 == result.x().size() );
CHECK( 6 == result.y().size() );
CHECK( 3 == result.boundaries().size() );
CHECK( 3 == result.interpolants().size() );
CHECK_THAT( 1., WithinRel( result.x()[0] ) );
CHECK_THAT( 2., WithinRel( result.x()[1] ) );
CHECK_THAT( 2., WithinRel( result.x()[2] ) );
CHECK_THAT( 3., WithinRel( result.x()[3] ) );
CHECK_THAT( 3., WithinRel( result.x()[4] ) );
CHECK_THAT( 4., WithinRel( result.x()[5] ) );
CHECK_THAT( 4., WithinRel( result.y()[0] ) );
CHECK_THAT( 3., WithinRel( result.y()[1] ) );
CHECK_THAT( 4., WithinRel( result.y()[2] ) );
CHECK_THAT( 3., WithinRel( result.y()[3] ) );
CHECK_THAT( 4., WithinRel( result.y()[4] ) );
CHECK_THAT( 4., WithinRel( result.y()[5] ) );
CHECK( 1 == result.boundaries()[0] );
CHECK( 3 == result.boundaries()[1] );
CHECK( 5 == result.boundaries()[2] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[0] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[1] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[2] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( result.domain() ) );

result = chunk - nonzerothreshold;

CHECK( 6 == result.x().size() );
CHECK( 6 == result.y().size() );
CHECK( 3 == result.boundaries().size() );
CHECK( 3 == result.interpolants().size() );
CHECK_THAT( 1., WithinRel( result.x()[0] ) );
CHECK_THAT( 2., WithinRel( result.x()[1] ) );
CHECK_THAT( 2., WithinRel( result.x()[2] ) );
CHECK_THAT( 3., WithinRel( result.x()[3] ) );
CHECK_THAT( 3., WithinRel( result.x()[4] ) );
CHECK_THAT( 4., WithinRel( result.x()[5] ) );
CHECK_THAT( 4., WithinRel( result.y()[0] ) );
CHECK_THAT( 3., WithinRel( result.y()[1] ) );
CHECK_THAT( 4., WithinRel( result.y()[2] ) );
CHECK_THAT( 3., WithinRel( result.y()[3] ) );
CHECK_THAT( 2., WithinRel( result.y()[4] ) );
CHECK_THAT( 0., WithinRel( result.y()[5] ) );
CHECK( 1 == result.boundaries()[0] );
CHECK( 3 == result.boundaries()[1] );
CHECK( 5 == result.boundaries()[2] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[0] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[1] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[2] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( result.domain() ) );

// this will add a second point at the lower end point
result = chunk + small;

Expand Down Expand Up @@ -1183,12 +1369,6 @@ SCENARIO( "InterpolationTable" ) {
CHECK( InterpolationType::LinearLinear == result.interpolants()[1] );
CHECK( InterpolationType::LinearLinear == result.interpolants()[2] );
CHECK( true == std::holds_alternative< IntervalDomain< double > >( result.domain() ) );

// the threshold table starts with a non-zero value
CHECK_THROWS( chunk += nonzerothreshold );
CHECK_THROWS( chunk -= nonzerothreshold );
CHECK_THROWS( result = chunk + nonzerothreshold );
CHECK_THROWS( result = chunk - nonzerothreshold );
} // THEN
} // WHEN
} // GIVEN
Expand Down Expand Up @@ -1569,6 +1749,17 @@ SCENARIO( "InterpolationTable" ) {
} // THEN
} // WHEN

WHEN( "the x grid has a jump at the beginning" ) {

std::vector< double > x = { 1., 1., 3., 4. };
std::vector< double > y = { 4., 3., 1., 4. };

THEN( "an exception is thrown" ) {

CHECK_THROWS( InterpolationTable< double >( std::move( x ), std::move( y ) ) );
} // THEN
} // WHEN

WHEN( "the x grid has a jump at the end" ) {

std::vector< double > x = { 1., 2., 4., 4. };
Expand Down
21 changes: 14 additions & 7 deletions src/scion/unionisation/unionise.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -13,13 +13,9 @@ namespace unionisation {
/**
* @brief Unionise two grids and preserve duplicate points that appear in each
*
* If the grids do not have the same end point, a duplicate point is inserted
* into the grid corresponding to the lowest end point (unless that is
* already a duplicate point).
*
* No special treatment is performed when the grids do not have the same
* starting point. We assume that the tabulated value at the higher starting
* point will be zero (we can enforce this behaviour when reading the data).
* If the grids do not have the same begin and/or end point, a duplicate point
* is inserted into the grid corresponding to the highest begining and/or
* lowest end point (unless those is already a duplicate point).
*
* @param first the first grid (assumed to be sorted)
* @param second the second grid (assumed to be sorted)
Expand All @@ -35,6 +31,17 @@ namespace unionisation {
grid.begin() );
grid.erase( end, grid.end() );

// special case: the begin points are not the same
if ( first.front() != second.front() ) {

X x = first.front() < second.front() ? second.front() : first.front();
auto iter = std::lower_bound( grid.begin(), grid.end(), x );
if ( *std::next( iter ) != x ) {

grid.insert( iter, x );
}
}

// special case: the end points are not the same
if ( first.back() != second.back() ) {

Expand Down