-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcam.py
169 lines (144 loc) · 7.41 KB
/
cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Run command: python cam.py METHOD MODALITY
# where METHOD=[gradcam, gradcam++, xgradcam, eigencam]
# MODALITY=[face, body]
import torch
import cv2
import numpy as np
import matplotlib.pyplot as plt
from torchvision.transforms import Compose, Normalize, ToTensor
from pytorch_grad_cam import GradCAM, GradCAMPlusPlus, XGradCAM, EigenCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
# from torchvision.models import resnet50
from EmoReact.models import TSN
import os
import sys
import pandas as pd
from PIL import Image
import torchvision.transforms.functional as tF
my_model = TSN(8, 1, 'RGB',
base_model='resnet50',
categorical=True,
continuous=False)
############### Model Definition ###############
# checkpoint = torch.load('logs/EmoReact/models/TSN_face_mask_seg1/model_best.pth')
checkpoint = torch.load('logs/EmoReact/models/TSN_body_mask_seg1/0928_165533/model_best.pth')
sd = checkpoint['state_dict']
new_sd = {key.replace('module.', '') : sd[key] for key in sd} #.replace('net.', '')
my_model.load_state_dict(new_sd)
############ Target Layer Definition ###########
target_layers = [my_model.base_model[-2][-1].conv1, my_model.base_model[-2][-1].bn1,
my_model.base_model[-2][-1].conv2, my_model.base_model[-2][-1].bn2,
my_model.base_model[-2][-1].conv3, my_model.base_model[-2][-1].bn3,
my_model.base_model[-2][-1].relu]
############### Input Tensor ###################
# input_folder = '/gpu-data2/nkeg/EmoReact/Data_mask/Train_mask/SUSHI28_2_mask_frames_full/' #Curiosity
# input_folder = '/gpu-data2/nkeg/EmoReact/Data_mask/Train_mask/Gay_Marriage326_2_mask_frames_full/' #Excitement
# input_folder = '/gpu-data2/nkeg/EmoReact/Data_mask/Train_mask/BULLYING101_2_mask_frames_full/' #Happiness
input_folder = '/gpu-data2/nkeg/EmoReact/Data_mask/Train_mask/SWING_COPTERS105_2_mask_frames_full/' #Frustration
modality = sys.argv[2]
############### Crop ###############
if modality == 'face':
# df = pd.read_csv('/gpu-data/filby/EmoReact_V_1.0/Data/AllVideos/SUSHI28_2.mp4_openface/SUSHI28_2.csv')
# df = pd.read_csv('/gpu-data/filby/EmoReact_V_1.0/Data/AllVideos/Gay_Marriage326_2.mp4_openface/Gay_Marriage326_2.csv')
# df = pd.read_csv('/gpu-data/filby/EmoReact_V_1.0/Data/AllVideos/BULLYING101_2.mp4_openface/BULLYING101_2.csv')
df = pd.read_csv('/gpu-data/filby/EmoReact_V_1.0/Data/AllVideos/SWING_COPTERS105_2.mp4_openface/SWING_COPTERS105_2.csv')
landmarks = ["x_"+str(i) for i in range(68)]
landmarks.extend (["y_"+str(i) for i in range(68)])
df = df.rename(columns=lambda x: x.strip())[landmarks]
os.mkdir('SUSHI28_2_face_crops')
input_list = []
for i, file in enumerate(sorted(os.listdir(input_folder))):
frame = Image.open(os.path.join(input_folder, file)).convert("RGB")
keypoints = df.iloc[i].values.reshape((2,68)).T
joint_min_x = int(round(np.nanmin(keypoints[:,0])))
joint_min_y = int(round(np.nanmin(keypoints[:,1])))
joint_max_x = int(round(np.nanmax(keypoints[:,0])))
joint_max_y = int(round(np.nanmax(keypoints[:,1])))
expand_x = int(round(10/100 * (joint_max_x-joint_min_x)))
expand_y = int(round(10/100 * (joint_max_y-joint_min_y)))
bottom = min(joint_max_y+expand_y, frame.height)
right = min(joint_max_x+expand_x,frame.width)
top = max(0,joint_min_y-expand_y)
left = max(0,joint_min_x-expand_x)
# print('Crop: ({},{})\n ({},{})'.format(top, left, bottom, right))
crop = tF.crop(frame, top, left, bottom-top, right-left)
crop.save('SUSHI28_2_face_crops'+'/'+str(i)+'.jpg')
crop = crop.resize((224,224))
crop = np.asarray(crop).astype(np.float32)/255
shp = crop.shape
input_frame = torch.from_numpy(crop).reshape((shp[2],shp[0],shp[1]))
input_list.append(input_frame)
os.system('rm -rf SUSHI28_2_face_crops')
input_tensor = torch.stack(input_list)
elif modality == 'body':
# vid = 'SUSHI28_2.mp4'
# vid = 'Gay_Marriage326_2.mp4'
# vid = 'BULLYING101_2.mp4'
vid = 'SWING_COPTERS105_2.mp4'
txt = os.path.join("/gpu-data2/nkeg/EmoReact/Holistic", vid.replace(".mp4","_hol.txt"))
with open(txt, "r") as f:
keypoints_file = f.readlines()
os.mkdir('SUSHI28_2_body_crops')
input_list = []
for i, file in enumerate(sorted(os.listdir(input_folder))):
frame = Image.open(os.path.join(input_folder, file)).convert("RGB")
keypoints = keypoints_file[i].rstrip('\n').split(' ')
keypoints = np.array([float(k) for k in keypoints if k!=''])
if keypoints.size == 0 or len(keypoints) == 0 or len(keypoints) == 1:
continue
keypoints = np.array([ [keypoints[i], keypoints[i+1]] for i in range(0, keypoints.shape[0], 2)])
keypoints[:,0] *= frame.width
keypoints[:,1] *= frame.height
joint_min_x = int(np.min(keypoints[:,0]))
joint_min_y = int(np.min(keypoints[:,1]))
joint_max_x = int(np.max(keypoints[:,0]))
joint_max_y = int(np.max(keypoints[:,1]))
expand_x = int(round(10/100 * (joint_max_x-joint_min_x)))
expand_y = int(round(10/100 * (joint_max_y-joint_min_y)))
joint_min_x = max(0, joint_min_x - expand_x)
joint_max_x = min(joint_max_x + expand_x, frame.width)
joint_min_y = max(0, joint_min_y - expand_y)
joint_max_y = min(joint_max_y + expand_y, frame.height)
crop = frame.crop(((joint_min_x, joint_min_y, joint_max_x, joint_max_y)))
crop.save('SUSHI28_2_body_crops'+'/'+str(i)+'.jpg')
if crop.size == (0,0) or crop.size == 0:
continue
crop = crop.resize((224,224))
crop = np.asarray(crop).astype(np.float32)/255
shp = crop.shape
input_frame = torch.from_numpy(crop).reshape((shp[2],shp[0],shp[1]))
input_list.append(input_frame)
os.system('rm -rf SUSHI28_2_body_crops')
input_tensor = torch.stack(input_list)
############ Construct the CAM object ##########
methods = {"gradcam": GradCAM, "gradcam++": GradCAMPlusPlus, "xgradcam": XGradCAM, "eigencam": EigenCAM}
cam_algorithm = methods[sys.argv[1]]
cam = cam_algorithm(model=my_model, target_layers=target_layers)#, use_cuda=True)
# Class Target
label_names = ['Curiosity', 'Uncertainty', 'Excitement', 'Happiness', 'Surprise', 'Disgust', 'Fear', 'Frustration']
class_target = {label: i for i, label in enumerate(label_names)}
targets = [ClassifierOutputTarget(class_target['Frustration'])]
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)#, eigen_smooth=True, aug_smooth=True)
input_tensor = input_tensor.cpu().detach().numpy()
imgs = []
# Mask input with cam
for (input_frame, frame_cam) in zip(input_tensor, grayscale_cam):
s = input_frame.shape
input_frame = input_frame.reshape((s[1], s[2], s[0]))
cam_image = show_cam_on_image(input_frame, frame_cam, use_rgb=True)
imgs.append(cam_image)
# Video output
fps = 3
width = imgs[0].shape[1]
height = imgs[0].shape[0]
if not os.path.exists('cams/'+ sys.argv[1]):
os.mkdir('cams/'+ sys.argv[1])
# out = cv2.VideoWriter('cams/' + sys.argv[1] + '/SUSHI28_2_' + modality + '_Curiosity.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (int(width), int(height)))
# out = cv2.VideoWriter('cams/' + sys.argv[1] + '/Gay_Marriage326_2_' + modality + '_Excitement.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (int(width), int(height)))
# out = cv2.VideoWriter('cams/' + sys.argv[1] + '/BULLYING101_2_' + modality + '_Happiness.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (int(width), int(height)))
out = cv2.VideoWriter('cams/' + sys.argv[1] + '/SWING_COPTERS105_2_' + modality + '_Frustration.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (int(width), int(height)))
for img in imgs:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
out.write(img)
out.release()