Skip to content

Latest commit

 

History

History
177 lines (134 loc) · 5.96 KB

README.md

File metadata and controls

177 lines (134 loc) · 5.96 KB

PyPI version build codecov Total alerts Language grade: Python

Pocket Stats

A tool to analyze your Pocket reading list.

Deployed at https://pocket-stats.nlbao.page .

Features

Word Cloud

word_cloud

Article Count timeseries

article_count

Word Count distribution

Stacked histograms word_count

Reading Speed & Reading Time

Stacked histograms reading_time

Top Domains

Stacked bar charts. top_domains

Language & Favorite

language_favorite

Installation

Prerequisites:

You can install using Pip:

    pip3 install pocket-stats

Or clone this repo:

    git clone https://github.com/nlbao/pocket_stats.git
    cd pocket_stats
    make setup

Run web app locally

    # Set necessary environment variables:
    export POCKET_STATS_CONSUMER_KEY='<your_pocket_consumer_key>'
    export POCKET_STATS_ACCESS_TOKEN='<your_pocket_access_token>'
       
    # Start the webserver
    gunicorn --workers 2 'pocket_stats.app:server' -b :8050 --reload
    
    # You will see something like this:
    # Dash is running on http://127.0.0.1:8050/

Go to http://127.0.0.1:8050/ from your web browser.

Data querying

    from pocket_stats.data import <your_function_names>
  • Count word in all the titles:
    >>> count_words_in_title(data)
    Counter({'-': 5, '|': 5, 'python': 3, 'problem': 2, 'strace': 1, 'wow': 1, 'much': 1, 'syscall': 1, 'martin': 1, 'heinz': 1, 'personal': 1, 'website': 1, '&': 1, 'blog': 1, 'call': 1, 'programmer,': 1})
  • Number of words in each article:
    >>> get_word_counts(data)
    [2207, 0, 5449, 4721, 3245, 805, 1849, 4087, 0, 538, 5054, 21, 866, 266, 1146, 213, 823, 3551, 787, 0]
  • Reading time of each article:
    >>> get_reading_time(data)
    [9.80888888888889, 24.217777777777776, 20.982222222222223, 14.422222222222222, 3.577777777777778, 8.217777777777778, 18.164444444444445, 2.391111111111111, 22.462222222222223, 0.09333333333333334, 3.848888888888889, 1.1822222222222223, 5.093333333333334, 0.9466666666666667, 3.6577777777777776, 15.782222222222222, 3.497777777777778]
  • Number of newly added articles per day:
    >>> get_added_time_series(data) 
                All articles
    2020-07-04             5
    2020-07-03             8
    2020-07-02             2
    2020-07-01             5
  • Number of newly archived articles per day:
    >>> get_archived_time_series(data)
                Archived articles
    2020-07-04             2
  • Number of articles per domain:
    >>> get_domain_counts(data)
    Counter({'kalzumeus.com': 3, 'bogleheads.org': 2, 'github.io': 2, 'brendangregg.com': 1, 'martinheinz.dev': 1, 'awealthofcommonsense.com': 1, 'jlcollinsnh.com': 1, 'callan.com': 1, 'engineerseekingfire.com': 1, 'arxiv.org': 1, 'popularmechanics.com': 1, 'dolpages.com': 1, 'economist.com': 1, 'romantomjak.com': 1, 'digitalocean.com': 1, 'deepnote.com': 1})
  • Number of articles per language:
    >>> get_language_counts(data)
    Counter({'en': 17, 'unknown': 3})
  • Number of favorite articles and its percent:
    >>> get_favorite_count(data)
    {'count': 2, 'percent': 0.1}

Testing

    make check

Deployment

You can deploy the app.py as a webserver.

Example: https://dash.plotly.com/deployment.

Contribute

Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us.

Authors

License

MIT License - see the LICENSE.md file for details.

Acknowledgments