-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_linreg.py
38 lines (30 loc) · 949 Bytes
/
tf_linreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
## 1. definicija računskog grafa
# podatci i parametri
X = tf.placeholder(tf.float32, [None])
Y_ = tf.placeholder(tf.float32, [None])
a = tf.Variable(0.0, name="a")
b = tf.Variable(0.0, name="b")
# afini regresijski model
Y = a * X + b
# kvadratni gubitak
loss = (Y-Y_)**2
# optimizacijski postupak: gradijentni spust
trainer = tf.train.GradientDescentOptimizer(0.1)
train_op = trainer.minimize(loss)
grad = trainer.compute_gradients(loss)
debug = []
for tens, var in grad:
debug.append(tf.Print(tens, [tens], var.name))
train_op = tf.group(*debug, trainer.apply_gradients(grad))
## 2. inicijalizacija parametara
sess = tf.Session()
sess.run(tf.initialize_all_variables())
## 3. učenje
# neka igre počnu!
for i in range(100):
val_loss, _, val_a,val_b = sess.run([loss, train_op, a,b],
feed_dict={X: [1,2], Y_: [3,5]})
print(i,val_loss, val_a,val_b)