-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutput_view.py
211 lines (180 loc) · 6.42 KB
/
output_view.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from urllib.parse import unquote
import altair as alt
import pandas
import requests as req
import streamlit as st
from token_handler import init_auth_state, sendTokenRefreshMessageToParent
query_params = st.query_params
app_id = query_params.get("app_id")
batch_id = query_params.get("batch_id")
api_base_url = unquote(query_params.get("url", ""))
init_auth_state()
error = False
if app_id is None or app_id == "":
app_id = "temp-demand-forecast"
if batch_id is None or batch_id == "":
batch_id = "sdfsdfs"
if api_base_url == "" or api_base_url is None:
api_base_url = "https://api.cloud.nextmv.io"
if error:
st.stop()
headers = st.session_state.headers
results_url = f"{api_base_url}/v1/applications/{app_id}/experiments/batch/{batch_id}"
response = req.get(results_url, headers=headers)
if response.status_code != 200:
st.error(f"Error: {response.text}")
st.stop()
if (
response.status_code == 403 or response.status_code == 401
) and st.session_state.get("api_key") == None:
sendTokenRefreshMessageToParent()
st.stop()
if response.status_code != 200:
st.error(f"Error: {response.text}")
st.stop()
df = pandas.DataFrame()
for summary in response.json()["grouped_distributional_summaries"]:
summary_type = [
"inputID",
"instanceID",
"versionID",
] # get the distributional summaries by inputID, instanceID, and versionID
if all(key in summary["group_keys"] for key in summary_type):
metadata = dict(zip(summary["group_keys"], summary["group_values"]))
values = dict(zip(summary["indicator_keys"], "indicator_distributions"))
for indicator in summary["indicator_keys"]:
data = {
"inputID": metadata.get("inputID"),
"instanceID": metadata.get("instanceID"),
"versionID": metadata.get("versionID"),
"indicator": indicator,
}
data["min"] = summary["indicator_distributions"][indicator]["min"]
data["max"] = summary["indicator_distributions"][indicator]["max"]
data["count"] = summary["indicator_distributions"][indicator]["count"]
data["mean"] = summary["indicator_distributions"][indicator]["mean"]
data["std"] = summary["indicator_distributions"][indicator]["std"]
data["shifted_geometric_mean_value"] = summary["indicator_distributions"][
indicator
]["shifted_geometric_mean"]["value"]
data["shifted_geometric_mean_shift"] = summary["indicator_distributions"][
indicator
]["shifted_geometric_mean"]["shift"]
data["p01"] = summary["indicator_distributions"][indicator]["percentiles"][
"p01"
]
data["p05"] = summary["indicator_distributions"][indicator]["percentiles"][
"p05"
]
data["p10"] = summary["indicator_distributions"][indicator]["percentiles"][
"p10"
]
data["p25"] = summary["indicator_distributions"][indicator]["percentiles"][
"p25"
]
data["p50"] = summary["indicator_distributions"][indicator]["percentiles"][
"p50"
]
data["p75"] = summary["indicator_distributions"][indicator]["percentiles"][
"p75"
]
data["p90"] = summary["indicator_distributions"][indicator]["percentiles"][
"p90"
]
data["p95"] = summary["indicator_distributions"][indicator]["percentiles"][
"p95"
]
data["p99"] = summary["indicator_distributions"][indicator]["percentiles"][
"p99"
]
df = pandas.concat([df, pandas.DataFrame([data])], ignore_index=True)
indicators = df["indicator"].unique()
columns = [
col
for col in df.columns
if col not in ["inputID", "instanceID", "versionID", "indicator"]
]
# Create a dropdown menu for the user to select the indicator and column
st.selectbox("Select a metric:", indicators, key="selected_indicator")
st.selectbox("Select a statistic:", columns, key="selected_column")
# # Initialize session_state if it doesn't exist
# if "selected_indicator" not in st.session_state:
# selected_indicator = indicators[0]
# if "selected_column" not in st.session_state:
# selected_column = columns[0]
df_filtered = df[df["indicator"] == st.session_state.selected_indicator]
chart = (
alt.Chart(df_filtered)
.mark_bar()
.encode(
x="inputID:N",
y=alt.Y(st.session_state.selected_column, stack="zero"),
color="instanceID:N",
tooltip=[st.session_state.selected_column],
)
.properties(width=800, height=400)
)
st.altair_chart(chart)
# if selected_column == "mean" and all(df_filtered["std"] > 1):
# st.write(df_filtered)
# df_filtered["lower_bound"] = df_filtered["mean"] - 1.96 * df_filtered["std"]
# df_filtered["upper_bound"] = df_filtered["mean"] + 1.96 * df_filtered["std"]
# st.write(df_filtered)
# base = alt.Chart(df_filtered).encode(
# x="instanceID:N",
# color="instanceID:N",
# )
# bars = base.mark_bar().encode(
# y=alt.Y(selected_column, title=selected_column),
# )
# error_bars = base.mark_errorbar().encode(
# y="lower_bound:Q",
# y2="upper_bound:Q",
# )
# chart = (
# (bars + error_bars)
# .properties(width=800)
# .facet(
# column="inputID",
# )
# .configure_axis(
# labelFontSize=15,
# titleFontSize=15,
# )
# .configure_title(fontSize=25)
# )
# else:
# base = alt.Chart(df_filtered).encode(
# x="instanceID:N",
# color="instanceID:N",
# )
# bars = base.mark_bar().encode(
# y=alt.Y(selected_column, title=selected_column),
# )
# chart = (
# bars.properties(width=800)
# .facet(
# column="inputID",
# )
# .configure_axis(
# labelFontSize=15,
# titleFontSize=15,
# )
# .configure_title(fontSize=25)
# )
# st.altair_chart(chart)
chart = (
alt.Chart(df_filtered)
.mark_rect()
.encode(
x="inputID:N",
y="instanceID:N",
color=alt.Color(
st.session_state.selected_column,
scale=alt.Scale(scheme="blues", type="log"),
),
tooltip=[st.session_state.selected_column],
)
.properties(width=800, height=400)
)
st.altair_chart(chart)