-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils_train.py
588 lines (510 loc) · 22.3 KB
/
utils_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import datasets, transforms
import numpy as np
import copy
import random
import math
import time
from collections import OrderedDict
from typing import Tuple
from torch import Tensor
import os
try:
from autopgd_pt import L1_projection
except ImportError:
from autoattack.autopgd_base import L1_projection
class FGSMAttack():
def __init__(self, eps=8. / 255., step_size=None, loss=None):
self.eps = eps
self.step_size = step_size if not step_size is None else eps
self.loss = loss
def perturb(self, model, x, y, random_start=False):
assert not self.loss is None
if random_start:
t = (x + (2. * torch.rand_like(x) - 1.) * self.eps).clamp(0., 1.)
else:
t = x.clone()
t.requires_grad = True
output = model(t)
loss = self.loss(output, y)
grad = torch.autograd.grad(loss, t)[0]
x_adv = x + grad.detach().sign() * self.step_size
return torch.min(torch.max(x_adv, x - self.eps), x + self.eps).clamp(0., 1.)
class PGDAttack():
def __init__(self, eps=8. / 255., step_size=None, loss=None, n_iter=10,
norm='Linf', verbose=False):
self.eps = eps
self.step_size = step_size if not step_size is None else eps / n_iter * 1.5
self.loss = loss
self.n_iter = n_iter
self.norm = norm
self.verbose = verbose
def perturb(self, model, x, y, random_start=False, return_acc=False):
assert not self.loss is None
if random_start:
x_adv = (x + (2. * torch.rand_like(x) - 1.) * self.eps).clamp(0., 1.)
else:
x_adv = x.clone()
n_fts = x.shape[1] * x.shape[2] * x.shape[3]
x_best, loss_best = x_adv.clone(), torch.zeros_like(y).float()
acc = torch.ones_like(y).detach().float()
x_adv.requires_grad = True
output = model(x_adv)
loss = self.loss(output, y, reduction='none')
ind = loss > loss_best
x_best[ind] = x_adv[ind].clone().detach()
loss_best[ind] = loss[ind].clone().detach()
acc[ind] = (output.max(dim=1)[1] == y).float()[ind].clone().detach()
grad = torch.autograd.grad(loss.mean(), x_adv)[0]
for it in range(self.n_iter):
if self.norm == 'Linf':
x_adv = x_adv.detach() + grad.detach().sign() * self.step_size
x_adv = torch.min(torch.max(x_adv, x - self.eps), x + self.eps).clamp(0., 1.)
elif self.norm == 'L2':
x_adv = x_adv.detach() + grad.detach() / (grad.detach() ** 2
).sum(dim=(1, 2, 3), keepdim=True).sqrt() * self.step_size
delta_l2norm = ((x_adv - x) ** 2).sum(dim=(1, 2, 3), keepdim=True).sqrt()
x_adv = (x + (x_adv - x) * torch.min(torch.ones_like(delta_l2norm),
self.eps * torch.ones_like(delta_l2norm) / delta_l2norm)).clamp(0., 1.)
elif self.norm == 'L1':
grad = grad.detach()
grad_topk = grad.abs().view(grad.shape[0], -1).topk(
k=max(int(.1 * n_fts), 1), dim=-1)[0][:, -1].view(grad.shape[0],
*[1]*(len(grad.shape) - 1))
sparsegrad = grad * (grad.abs() >= grad_topk).float()
x_adv = x_adv.detach() + self.step_size * sparsegrad / (sparsegrad.abs().view(
x.shape[0], -1).sum(dim=-1).view(-1, 1, 1, 1) + 1e-10)
delta_temp = L1_projection(x, x_adv - x, self.eps)
x_adv += delta_temp
x_adv.requires_grad = True
output = model(x_adv)
loss = self.loss(output, y, reduction='none')
ind = loss > loss_best
x_best[ind] = x_adv[ind].clone().detach()
loss_best[ind] = loss[ind].clone().detach()
acc[ind] = (output.max(dim=1)[1] == y).float()[ind].clone().detach()
grad = torch.autograd.grad(loss.mean(), x_adv)[0]
if self.verbose:
print('[{}] it={} loss={:.5f} acc={:.1%}'.format(self.norm, it, loss_best.mean().item(),
(output.max(dim=1)[1] == y).cpu().float().mean()))
if not return_acc:
return x_best.detach()
else:
return x_best.detach(), acc
class MSDAttack():
def __init__(self, eps, step_size=None, loss=None, n_iter=10):
self.eps = eps
self.step_size = step_size if not step_size is None else [eps / n_iter * 1.25 for eps in self.eps]
self.loss = loss
self.n_iter = n_iter
def perturb(self, model, x, y, random_start=False):
assert not self.loss is None
if random_start:
x_adv = (x + (2. * torch.rand_like(x) - 1.) * self.eps).clamp(0., 1.)
else:
x_adv = x.clone()
n_fts = x.shape[1] * x.shape[2] * x.shape[3]
x_best, loss_best = x_adv.clone(), torch.zeros_like(y).float()
#x_adv.requires_grad = True
for it in range(self.n_iter):
x_adv.requires_grad = True
#with torch.enable_grad()
output = model(x_adv)
loss = self.loss(output, y, reduction='none')
avgloss = loss.mean()
grad = torch.autograd.grad(avgloss, x_adv)[0]
ind = loss > loss_best
x_best[ind] = x_adv[ind].clone().detach()
loss_best[ind] = loss[ind].clone().detach()
#grad = torch.autograd.grad(loss.mean(), x_adv)[0].detach()
x_adv_linf = x_adv.detach() + grad.detach().sign() * self.step_size[0]
x_adv_linf = torch.min(torch.max(x_adv_linf, x - self.eps[0]), x + self.eps[0]).clamp(0., 1.)
x_adv_l2 = x_adv.detach() + grad.detach() / (grad.detach() ** 2
).sum(dim=(1, 2, 3), keepdim=True).sqrt() * self.step_size[1]
delta_l2norm = ((x_adv_l2 - x) ** 2).sum(dim=(1, 2, 3), keepdim=True).sqrt()
x_adv_l2 = (x + (x_adv_l2 - x) * torch.min(torch.ones_like(delta_l2norm),
self.eps[1] * torch.ones_like(delta_l2norm) / delta_l2norm)).clamp(0., 1.)
grad = grad.detach()
grad_topk = grad.abs().view(grad.shape[0], -1).topk(
k=max(int(.1 * n_fts), 1), dim=-1)[0][:, -1].view(grad.shape[0],
*[1]*(len(grad.shape) - 1))
sparsegrad = grad * (grad.abs() >= grad_topk).float()
x_adv_l1 = x_adv.detach() + self.step_size[2] * sparsegrad / (sparsegrad.abs().view(
x.shape[0], -1).sum(dim=-1).view(-1, 1, 1, 1) + 1e-10)
delta_temp = L1_projection(x, x_adv_l1 - x, self.eps[2])
x_adv_l1 += delta_temp
'''x_adv_linf.requires_grad_()
x_adv_l2.requires_grad_()
x_adv_l1.reuiqres_grad_()'''
l_x_adv = [x_adv_linf, x_adv_l2, x_adv_l1]
l_output = [model(x_adv_linf), model(x_adv_l2), model(x_adv_l1)]
l_loss = [self.loss(c, y, reduction='none') for c in l_output]
#l_avgloss = [c.mean() for c in l_loss]
val_max, ind_max = torch.max(torch.stack(l_loss, dim=1), dim=1)
#x_adv, loss = l_x_adv[ind_max], l_loss[ind_max]
x_adv = x_adv_linf.clone()
x_adv[ind_max == 1] = x_adv_l2[ind_max == 1].clone()
x_adv[ind_max == 2] = x_adv_l1[ind_max == 2].clone()
#print('it={} - best norm=({}, {}, {}) - loss={}'.format(it + 1, (ind_max == 0).sum(),
# (ind_max == 1).sum(), (ind_max == 2).sum(), loss_best.mean().item()))
return x_best.detach()
class MultiPGDAttack():
def __init__(self, eps, step_size=None, loss=None, n_iter=[10, 10, 10], use_miscl=False,
l_norms=None):
self.eps = eps
self.step_size = step_size if not step_size is None else [eps / n_iter * 1.5 for eps in self.eps]
self.loss = loss
self.n_iter = n_iter
self.indiv_adversary = PGDAttack(eps[0], loss=loss)
self.use_miscl = use_miscl
self.l_norms = l_norms if not l_norms is None else ['Linf', 'L2', 'L1']
def perturb(self, model, x, y, random_start=False, return_acc=False):
#assert not self.loss is None
l_x_adv = []
l_acc = []
for i, norm in enumerate(self.l_norms):
self.indiv_adversary.eps = self.eps[i] + 0.
self.indiv_adversary.step_size = self.step_size[i] + 0.
self.indiv_adversary.norm = norm + ''
self.indiv_adversary.n_iter = self.n_iter[i]
if not return_acc:
x_curr = self.indiv_adversary.perturb(model, x, y)
else:
x_curr, acc_curr = self.indiv_adversary.perturb(model, x, y, return_acc=True)
l_acc.append(acc_curr)
l_x_adv.append(x_curr.clone())
if not self.use_miscl:
if not return_acc:
return torch.cat(l_x_adv, dim=0)
else:
return torch.cat(l_x_adv, dim=0), torch.cat(l_acc, dim=0)
else:
#logits = torch.zeros([len(l_x_adv), x.shape[0], 10]).cuda()
loss = torch.zeros([len(l_x_adv), x.shape[0]]).cuda()
for i, x_adv in enumerate(l_x_adv):
output = model(x_adv)
loss[i] = self.loss(output, y) - 1e5 * (output.max(dim=1)[1] == y).float()
ind_max = loss.max(dim=0)[1]
x_adv = l_x_adv[0].clone()
x_adv[ind_max == 1] = l_x_adv[1][ind_max == 1].clone()
x_adv[ind_max == 2] = l_x_adv[2][ind_max == 2].clone()
return x_adv
# data loaders
def load_data(args):
crop_input_size = 0 if args.crop_input is None else args.crop_input
crop_data_size = 0 if args.crop_data is None else args.crop_data
if args.dataset == 'cifar10':
train_transform = transforms.Compose([
transforms.RandomCrop(32 - crop_data_size, padding=4 - crop_input_size),
transforms.RandomHorizontalFlip(),
#transforms.RandomRotation(15),
transforms.ToTensor(),
])
elif args.dataset == 'svhn':
train_transform = transforms.Compose([
#transforms.RandomCrop(32 - crop_data_size, padding=4 - crop_input_size),
transforms.ToTensor(),
])
elif args.dataset == 'mnist':
train_transform = transforms.Compose([
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.ToTensor(),
])
root = args.data_dir + '' #'/home/EnResNet/WideResNet34-10/data/'
num_workers = 2
if args.dataset == 'cifar10':
train_dataset = datasets.CIFAR10(
root, train=True, transform=train_transform, download=True)
test_dataset = datasets.CIFAR10(
root, train=False, transform=test_transform, download=True)
elif args.dataset == 'svhn':
train_dataset = datasets.SVHN(root=root, split='train',
transform=train_transform, download=True)
test_dataset = datasets.SVHN(root=root, split='test', #train=False
transform=test_transform, download=True)
elif args.dataset == 'mnist':
train_dataset = datasets.MNIST(
root, train=True, transform=train_transform, download=True)
test_dataset = datasets.MNIST(
root, train=False, transform=test_transform, download=True)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
pin_memory=True,
num_workers=num_workers,
)
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset,
batch_size=args.batch_size_eval,
shuffle=False,
pin_memory=True,
num_workers=0,
)
return train_loader, test_loader
def load_imagenet_train(args):
from robustness.datasets import DATASETS
from robustness.tools import helpers
data_paths = ['/home/scratch/datasets/imagenet',
'/scratch_local/datasets/ImageNet2012',
'/mnt/qb/datasets/ImageNet2012',
'/scratch/datasets/imagenet/']
for data_path in data_paths:
if os.path.exists(data_path):
break
print(f'found dataset at {data_path}')
dataset = DATASETS['imagenet'](data_path) #'/home/scratch/datasets/imagenet'
train_loader, val_loader = dataset.make_loaders(2,
args.batch_size, data_aug=True)
train_loader = helpers.DataPrefetcher(train_loader)
val_loader = helpers.DataPrefetcher(val_loader)
return train_loader, val_loader
# other utils
def get_accuracy(model, data_loader=None):
assert not model.training
if not data_loader is None:
acc = 0.
c = 0
with torch.no_grad():
for (x, y) in data_loader:
output = model(x.cuda())
acc += (output.cpu().max(dim=1)[1] == y).float().sum()
c += x.shape[0]
return acc.item() / c
def get_lr_schedule(args):
if args.lr_schedule == 'superconverge':
lr_schedule = lambda t: np.interp([t], [0, args.epochs * 2 // 5, args.epochs], [0, args.lr_max, 0])[0]
# lr_schedule = lambda t: np.interp([t], [0, args.epochs], [0, args.lr_max])[0]
elif args.lr_schedule == 'piecewise':
def lr_schedule(t):
if t / args.epochs < 0.5:
return args.lr_max
elif t / args.epochs < 0.75:
return args.lr_max / 10.
else:
return args.lr_max / 100.
elif args.lr_schedule.startswith('piecewise'):
w = [float(c) for c in args.lr_schedule.split('-')[1:]]
def lr_schedule(t):
c = 0
while t / args.epochs > sum(w[:c + 1]) / sum(w):
c += 1
return args.lr_max / 10. ** c
return lr_schedule
def norm_schedule(it, epoch, epochs, l_norms, ps=None, schedule='piecewise'):
#assert l_norms == ['Linf', 'L2', 'L1']
if schedule == 'piecewise':
if epoch < epochs * .5:
return l_norms.index('L2')
else:
if not ps is None:
ind_linf = l_norms.index('Linf')
ind_l1 = l_norms.index('L1')
return random.choices([ind_linf, ind_l1], weights=[
ps[ind_linf], ps[ind_l1]])[0]
if it % 2 == 0:
return l_norms.index('Linf')
else:
return l_norms.index('L1')
# swa tools
def polyak_averaging(p_local, p_new, it):
return (it * p_local + p_new) / (it + 1.)
def exp_decay(p_local, p_new, theta=.995):
return theta * p_local + (1. - theta) * p_new
class AveragedModel(nn.Module):
def __init__(self, model):
super(AveragedModel, self).__init__()
self._model = copy.deepcopy(model)
#
def forward(self, x):
return self._model(x)
@torch.no_grad()
def update_parameters(self, model, avg_fun=exp_decay):
for p_local, p_new in zip(self._model.parameters(), model.parameters()):
p_local.set_(avg_fun(p_local, p_new))
# initializations
def initialize_weights(module):
if isinstance(module, nn.Conv2d):
n = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
module.weight.data.normal_(0, math.sqrt(2. / n))
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Linear):
n = module.in_features
module.weight.data.normal_(0, math.sqrt(2. / n))
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.BatchNorm2d):
module.weight.data.fill_(1)
module.bias.data.zero_()
# stepsizes for pgd-at
def get_stepsize(norm, eps, method='default'):
#assert method == 'default'
if method == 'default':
if norm == 'Linf':
return eps / 4.
elif norm == 'L2':
return eps / 3.
elif norm == 'L1':
return 2. * eps * 255. / 2000.
else:
raise ValueError('please specify a norm')
elif method == 'msd':
if norm == 'Linf':
return eps / 4.
elif norm == 'L2':
return eps / 3.
elif norm == 'L1':
return 1. #2. * eps * 255. / 2000.
else:
raise ValueError('please specify a norm')
elif method == 'msd-5':
if norm == 'Linf':
return eps / 2.
elif norm == 'L2':
return eps / 1.5
elif norm == 'L1':
return eps / 2.
else:
raise ValueError('please specify a norm')
elif method == 'half':
return eps / 2.
# utils max strategy
def form_batch_max(l_adv, l_acc, l_loss, l_norm):
bs = l_adv[0].shape[0]
adv = l_adv[0].clone()
best_norm = torch.zeros([bs]).long() #[ for _ in range(bs)]
best_loss = l_loss[0].clone()
best_acc = l_acc[0].clone()
for counter in range(1, len(l_norm)):
ind = l_loss[counter] > best_loss
adv[ind] = l_adv[counter][ind].clone()
best_norm[ind] = counter + 0
best_loss[ind] = l_loss[counter][ind].clone()
best_acc[ind] = l_acc[counter][ind].clone()
#best_norm = [l_norm[best_norm[val].item()] + '' for val in range(bs)]
return adv, best_norm, best_acc, best_loss
def random_crop(x, size, padding):
z = torch.zeros([x.shape[0], x.shape[1], size + 2 * padding,
size + 2 * padding], device=x.device)
z[:, :, padding:padding + size, padding:padding + size] += x
a = random.randint(0, 2 * padding)
b = random.randint(0, 2 * padding)
return z[:, :, a:a + size, b:b + size]
class BatchTracker():
def __init__(self, imgs, labs, bs, norms, alpha):
self.imgs_orig = imgs.clone()
self.labs_orig = labs.clone()
self.bs = bs
self.n_ex = imgs.shape[0]
self.norms = norms
#self.loss_norms = torch.zeros([self.n_ex, 2]) #{k: torch.zeros([self.n_ex]) for k in norms}
#self.count_norms = self.loss_norms.clone()
self.loss_norms_ra = torch.zeros([self.n_ex, 2])
self.alpha = alpha
def batch_new_epoch(self):
self.ind_sort = torch.randperm(self.n_ex)
self.batch_init = 0
#self.loss_norms[k]
u = torch.ones_like(self.loss_norms_ra[:, 0])
'''ps = (self.loss_norms[:, 0] / torch.max(self.count_norms[:, 0], u)) / torch.max(
self.loss_norms[:, 0] / torch.max(self.count_norms[:, 0], u
) + self.loss_norms[:, 1] / torch.max(self.count_norms[:, 1], u), u)
ps = torch.max(ps, .1 * u)'''
tot_curr = self.loss_norms_ra[:, 0] + self.loss_norms_ra[:, 1]
ind_tot_curr = tot_curr == 0.
tot_curr[tot_curr == 0.] = 1.
ps = self.loss_norms_ra[:, 0] / tot_curr
ps_old = ps.clone()
#ps = ps * (self.loss_norms_ra.min(dim=1)[0] > 0.) + .5 * (self.loss_norms_ra.min(dim=1)[0] <= 0.)
ps[(ps == 0.) + (ps == 1.)] = 1. - ps[(ps == 0.) + (ps == 1.)]
if True: #False
#
ps = (self.loss_norms_ra[:, 0] > self.loss_norms_ra[:, 1]).float() #ps.min(2)[1]
ps[ps_old == 0.] = 1.
ps[ps_old == 1.] = 0.
#print(ps)
ps[ind_tot_curr] = .5
#print(ps)
#print(ind_tot_curr.sum(), ((ps_old == 0.) + (ps_old == 1.)).sum())
#norm_at = (ps < random.random()).long()
#print(self.labs_orig)
#print(norm_at)
train_loader = []
for c in range(0, self.n_ex, self.bs):
ind_curr = self.ind_sort[c:c + self.bs].clone()
x_curr = self.custom_augm(self.imgs_orig[ind_curr].clone())
y_curr = self.labs_orig[ind_curr].clone()
norm_curr = (ps[ind_curr] < random.random()).long().clone() #norm_at[ind_curr].clone()
#print(y_curr, norm_curr)
train_loader.append((x_curr.clone(), y_curr, norm_curr))
return train_loader
def custom_augm(self, x):
z = random_crop(x, x.shape[-1], 4)
if random.random() > .5:
return transforms.functional.hflip(z)
else:
return z.clone()
def update_loss(self, loss, norm, i):
ind_curr = self.ind_sort[i * self.bs:(i + 1) * self.bs].clone()
#print(ind_curr)
#self.loss_norms[ind_curr, norm] += loss
#self.count_norms[ind_curr, norm] += 1
self.loss_norms_ra[ind_curr, norm] = self.loss_norms_ra[ind_curr, norm
] * self.alpha + loss.cpu() * (1. - self.alpha)
# different resolution
class ImageCropper(nn.Module):
def __init__(self, w: int, #float, float, float
shape: Tuple[int, int, int, int]) -> None:
super(ImageCropper, self).__init__()
mask = get_mask(shape, w)
self.register_buffer('mask', mask)
def forward(self, input: Tensor) -> Tensor:
return input * self.mask
def get_mask(shape, w):
mask = torch.zeros(shape)
assert len(mask.shape) == 4
mask[:, :, w:mask.shape[-2] - w, w:mask.shape[-1] - w] = 1
return mask
def add_preprocessing(model: nn.Module, w: int, shape: Tuple[int, int, int]
) -> nn.Module:
layers = OrderedDict([
('crop', ImageCropper(w, [1] + shape)),
('model', model)
])
return nn.Sequential(layers)
def Lp_norm(x, p, keepdim=False):
assert p > 1
z = x.view(x.shape[0], -1)
t = (z.abs() ** p).sum(dim=-1) ** (1. / p)
if keepdim:
t = t.view(-1, *[1] * (len(x.shape) - 1))
return t
if __name__ == '__main__':
'''args = lambda: 0
args.batch_size = 256
train_loader, test_loader = load_imagenet_train(args)
print(len(train_loader), len(test_loader))'''
custom_loader = BatchTracker(torch.ones([10, 3, 5, 5]) * torch.arange(
10).view(-1, 1, 1, 1), torch.arange(10), 3, ['Linf', 'L1'], .9)
for epoch in range(4):
startt = time.time()
train_loader = custom_loader.batch_new_epoch()
print('loader created in {:.3f} s'.format(time.time() - startt))
loss = torch.zeros([10])
#norm_all = loss.clone()
#print(custom_loader.loss_norms_ra)
for i in range(4): #(x, y, norm) in enumerate(train_loader)
x, y, norm = train_loader[i]
#print(y, norm)
loss = torch.randn([y.shape[0]]).abs()
custom_loader.update_loss(loss, norm, i)
print(x.view(x.shape[0], -1).max(dim=1)[0])
#print(custom_loader.loss_norms)
#print(custom_loader.count_norms)
#print(custom_loader.loss_norms_ra)