forked from mnielsen/nnadl_site
-
Notifications
You must be signed in to change notification settings - Fork 34
/
supporters.html
599 lines (566 loc) · 23.5 KB
/
supporters.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
<!DOCTYPE html>
<html lang="en">
<!-- Produced from a LaTeX source file. Note that the production is done -->
<!-- by a very rough-and-ready (and buggy) script, so the HTML and other -->
<!-- code is quite ugly! Later versions should be better. -->
<meta charset="utf-8">
<meta name="citation_title" content="ニューラルネットワークと深層学習">
<meta name="citation_author" content="Nielsen, Michael A.">
<meta name="citation_publication_date" content="2015">
<meta name="citation_fulltext_html_url" content="http://neuralnetworksanddeeplearning.com">
<meta name="citation_publisher" content="Determination Press">
<link rel="icon" href="nnadl_favicon.ICO" />
<title>ニューラルネットワークと深層学習</title>
<script src="assets/jquery.min.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {inlineMath: [['$','$']]},
"HTML-CSS":
{scale: 92},
TeX: { equationNumbers: { autoNumber: "AMS" }}});
</script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<link href="assets/style.css" rel="stylesheet">
<link href="assets/pygments.css" rel="stylesheet">
<link rel="stylesheet" href="http://code.jquery.com/ui/1.11.2/themes/smoothness/jquery-ui.css">
<style>
/* Adapted from */
/* https://groups.google.com/d/msg/mathjax-users/jqQxrmeG48o/oAaivLgLN90J, */
/* by David Cervone */
@font-face {
font-family: 'MJX_Math';
src: url('https://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/eot/MathJax_Math-Italic.eot'); /* IE9 Compat Modes */
src: url('https://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/eot/MathJax_Math-Italic.eot?iefix') format('eot'),
url('https://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/woff/MathJax_Math-Italic.woff') format('woff'),
url('https://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/otf/MathJax_Math-Italic.otf') format('opentype'),
url('https://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/svg/MathJax_Math-Italic.svg#MathJax_Math-Italic') format('svg');
}
@font-face {
font-family: 'MJX_Main';
src: url('https://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/eot/MathJax_Main-Regular.eot'); /* IE9 Compat Modes */
src: url('https://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/eot/MathJax_Main-Regular.eot?iefix') format('eot'),
url('https://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/woff/MathJax_Main-Regular.woff') format('woff'),
url('https://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/otf/MathJax_Main-Regular.otf') format('opentype'),
url('https://cdn.mathjax.org/mathjax/latest/fonts/HTML-CSS/TeX/svg/MathJax_Main-Regular.svg#MathJax_Main-Regular') format('svg');
}
</style>
</head>
<body><div class="nonumber_header"><h2><a href="index.html">Supporters</a></h2></div><div class="section"><div id="toc">
<p class="toc_title"><a href="index.html">ニューラルネットワークと深層学習</a></p><p class="toc_not_mainchapter"><a href="about.html">What this book is about</a></p><p class="toc_not_mainchapter"><a href="exercises_and_problems.html">On the exercises and problems</a></p><p class='toc_mainchapter'><a id="toc_using_neural_nets_to_recognize_handwritten_digits_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_using_neural_nets_to_recognize_handwritten_digits" src="images/arrow.png" width="15px"></a><a href="chap1.html">ニューラルネットワークを用いた手書き文字認識</a><div id="toc_using_neural_nets_to_recognize_handwritten_digits" style="display: none;"><p class="toc_section"><ul><a href="chap1.html#perceptrons"><li>Perceptrons</li></a><a href="chap1.html#sigmoid_neurons"><li>Sigmoid neurons</li></a><a href="chap1.html#the_architecture_of_neural_networks"><li>The architecture of neural networks</li></a><a href="chap1.html#a_simple_network_to_classify_handwritten_digits"><li>A simple network to classify handwritten digits</li></a><a href="chap1.html#learning_with_gradient_descent"><li>Learning with gradient descent</li></a><a href="chap1.html#implementing_our_network_to_classify_digits"><li>Implementing our network to classify digits</li></a><a href="chap1.html#toward_deep_learning"><li>Toward deep learning</li></a></ul></p></div>
<script>
$('#toc_using_neural_nets_to_recognize_handwritten_digits_reveal').click(function() {
var src = $('#toc_img_using_neural_nets_to_recognize_handwritten_digits').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_using_neural_nets_to_recognize_handwritten_digits").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_using_neural_nets_to_recognize_handwritten_digits").attr('src', 'images/arrow.png');
};
$('#toc_using_neural_nets_to_recognize_handwritten_digits').toggle('fast', function() {});
});</script><p class='toc_mainchapter'><a id="toc_how_the_backpropagation_algorithm_works_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_how_the_backpropagation_algorithm_works" src="images/arrow.png" width="15px"></a><a href="chap2.html">逆伝播の仕組み</a><div id="toc_how_the_backpropagation_algorithm_works" style="display: none;"><p class="toc_section"><ul><a href="chap2.html#warm_up_a_fast_matrix-based_approach_to_computing_the_output_from_a_neural_network"><li>Warm up: a fast matrix-based approach to computing the output from a neural network</li></a><a href="chap2.html#the_two_assumptions_we_need_about_the_cost_function"><li>The two assumptions we need about the cost function</li></a><a href="chap2.html#the_hadamard_product_$s_\odot_t$"><li>The Hadamard product, $s \odot t$</li></a><a href="chap2.html#the_four_fundamental_equations_behind_backpropagation"><li>The four fundamental equations behind backpropagation</li></a><a href="chap2.html#proof_of_the_four_fundamental_equations_(optional)"><li>Proof of the four fundamental equations (optional)</li></a><a href="chap2.html#the_backpropagation_algorithm"><li>The backpropagation algorithm</li></a><a href="chap2.html#the_code_for_backpropagation"><li>The code for backpropagation</li></a><a href="chap2.html#in_what_sense_is_backpropagation_a_fast_algorithm"><li>In what sense is backpropagation a fast algorithm?</li></a><a href="chap2.html#backpropagation_the_big_picture"><li>Backpropagation: the big picture</li></a></ul></p></div>
<script>
$('#toc_how_the_backpropagation_algorithm_works_reveal').click(function() {
var src = $('#toc_img_how_the_backpropagation_algorithm_works').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_how_the_backpropagation_algorithm_works").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_how_the_backpropagation_algorithm_works").attr('src', 'images/arrow.png');
};
$('#toc_how_the_backpropagation_algorithm_works').toggle('fast', function() {});
});</script><p class='toc_mainchapter'><a id="toc_improving_the_way_neural_networks_learn_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_improving_the_way_neural_networks_learn" src="images/arrow.png" width="15px"></a><a href="chap3.html">ニューラルネットワークの学習の改善</a><div id="toc_improving_the_way_neural_networks_learn" style="display: none;"><p class="toc_section"><ul><a href="chap3.html#the_cross-entropy_cost_function"><li>The cross-entropy cost function</li></a><a href="chap3.html#overfitting_and_regularization"><li>Overfitting and regularization</li></a><a href="chap3.html#weight_initialization"><li>Weight initialization</li></a><a href="chap3.html#handwriting_recognition_revisited_the_code"><li>Handwriting recognition revisited: the code</li></a><a href="chap3.html#how_to_choose_a_neural_network's_hyper-parameters"><li>How to choose a neural network's hyper-parameters?</li></a><a href="chap3.html#other_techniques"><li>Other techniques</li></a></ul></p></div>
<script>
$('#toc_improving_the_way_neural_networks_learn_reveal').click(function() {
var src = $('#toc_img_improving_the_way_neural_networks_learn').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_improving_the_way_neural_networks_learn").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_improving_the_way_neural_networks_learn").attr('src', 'images/arrow.png');
};
$('#toc_improving_the_way_neural_networks_learn').toggle('fast', function() {});
});</script><p class='toc_mainchapter'><a id="toc_a_visual_proof_that_neural_nets_can_compute_any_function_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_a_visual_proof_that_neural_nets_can_compute_any_function" src="images/arrow.png" width="15px"></a><a href="chap4.html">ニューラルネットワークが任意の関数を表現できることの視覚的証明</a><div id="toc_a_visual_proof_that_neural_nets_can_compute_any_function" style="display: none;"><p class="toc_section"><ul><a href="chap4.html#two_caveats"><li>Two caveats</li></a><a href="chap4.html#universality_with_one_input_and_one_output"><li>Universality with one input and one output</li></a><a href="chap4.html#many_input_variables"><li>Many input variables</li></a><a href="chap4.html#extension_beyond_sigmoid_neurons"><li>Extension beyond sigmoid neurons</li></a><a href="chap4.html#fixing_up_the_step_functions"><li>Fixing up the step functions</li></a><a href="chap4.html#conclusion"><li>Conclusion</li></a></ul></p></div>
<script>
$('#toc_a_visual_proof_that_neural_nets_can_compute_any_function_reveal').click(function() {
var src = $('#toc_img_a_visual_proof_that_neural_nets_can_compute_any_function').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_a_visual_proof_that_neural_nets_can_compute_any_function").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_a_visual_proof_that_neural_nets_can_compute_any_function").attr('src', 'images/arrow.png');
};
$('#toc_a_visual_proof_that_neural_nets_can_compute_any_function').toggle('fast', function() {});
});</script><p class='toc_mainchapter'><a id="toc_why_are_deep_neural_networks_hard_to_train_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_why_are_deep_neural_networks_hard_to_train" src="images/arrow.png" width="15px"></a><a href="chap5.html">ニューラルネットワークを訓練するのはなぜ難しいのか</a><div id="toc_why_are_deep_neural_networks_hard_to_train" style="display: none;"><p class="toc_section"><ul><a href="chap5.html#the_vanishing_gradient_problem"><li>The vanishing gradient problem</li></a><a href="chap5.html#what's_causing_the_vanishing_gradient_problem_unstable_gradients_in_deep_neural_nets"><li>What's causing the vanishing gradient problem? Unstable gradients in deep neural nets</li></a><a href="chap5.html#unstable_gradients_in_more_complex_networks"><li>Unstable gradients in more complex networks</li></a><a href="chap5.html#other_obstacles_to_deep_learning"><li>Other obstacles to deep learning</li></a></ul></p></div>
<script>
$('#toc_why_are_deep_neural_networks_hard_to_train_reveal').click(function() {
var src = $('#toc_img_why_are_deep_neural_networks_hard_to_train').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_why_are_deep_neural_networks_hard_to_train").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_why_are_deep_neural_networks_hard_to_train").attr('src', 'images/arrow.png');
};
$('#toc_why_are_deep_neural_networks_hard_to_train').toggle('fast', function() {});
});</script>
<p class='toc_mainchapter'><a id="toc_deep_learning_reveal" class="toc_reveal" onMouseOver="this.style.borderBottom='1px solid #2A6EA6';" onMouseOut="this.style.borderBottom='0px';"><img id="toc_img_deep_learning" src="images/arrow.png" width="15px"></a><a href="chap6.html">深層学習</a><div id="toc_deep_learning" style="display: none;"><p class="toc_section"><ul><a href="chap6.html#introducing_convolutional_networks"><li>Introducing convolutional networks</li></a><a href="chap6.html#convolutional_neural_networks_in_practice"><li>Convolutional neural networks in practice</li></a><a href="chap6.html#the_code_for_our_convolutional_networks"><li>The code for our convolutional networks</li></a><a href="chap6.html#recent_progress_in_image_recognition"><li>Recent progress in image recognition</li></a><a href="chap6.html#other_approaches_to_deep_neural_nets"><li>Other approaches to deep neural nets</li></a><a href="chap6.html#on_the_future_of_neural_networks"><li>On the future of neural networks</li></a></ul></p></div>
<script>
$('#toc_deep_learning_reveal').click(function() {
var src = $('#toc_img_deep_learning').attr('src');
if(src == 'images/arrow.png') {
$("#toc_img_deep_learning").attr('src', 'images/arrow_down.png');
} else {
$("#toc_img_deep_learning").attr('src', 'images/arrow.png');
};
$('#toc_deep_learning').toggle('fast', function() {});
});</script>
<p class="toc_not_mainchapter"><a href="sai.html">
Appendix: 知性のある <i>シンプルな</i> アルゴリズムはあるか?</a></p>
<p class="toc_not_mainchapter"><a href="acknowledgements.html">Acknowledgements</a></p><p class="toc_not_mainchapter"><a href="faq.html">Frequently Asked Questions</a></p>
<hr>
<span class="sidebar_title">Sponsors</span>
<br/>
<a href='http://www.ersatz1.com/'><img src='assets/ersatz.png' width='140px' style="padding: 0px 0px 10px 8px; border-style: none;"></a>
<a href='http://gsquaredcapital.com/'><img src='assets/gsquared.png' width='150px' style="padding: 0px 0px 10px 10px; border-style: none;"></a>
<a href='http://www.tineye.com'><img src='assets/tineye.png' width='150px'
style="padding: 0px 0px 10px 8px; border-style: none;"></a>
<a href='http://www.visionsmarts.com'><img
src='assets/visionsmarts.png' width='160px' style="padding: 0px 0px
0px 0px; border-style: none;"></a> <br/>
<!--
<p class="sidebar">Thanks to all the <a
href="supporters.html">supporters</a> who made the book possible.
Thanks also to all the contributors to the <a
href="bugfinder.html">Bugfinder Hall of Fame</a>. </p>
<p class="sidebar">The book is currently a beta release, and is still
under active development. Please send error reports to
[email protected]. For other enquiries, please see the <a
href="faq.html">FAQ</a> first.</p>
-->
<p class="sidebar">著者と共にこの本を作り出してくださった<a
href="supporters.html">サポーター</a>の皆様に感謝いたします。
また、<a
href="bugfinder.html">バグ発見者の殿堂</a>に名を連ねる皆様にも感謝いたします。
また、日本語版の出版にあたっては、<a
href="translators.html">翻訳者</a>の皆様に深く感謝いたします。
</p>
<p class="sidebar">この本は目下のところベータ版で、開発続行中です。
エラーレポートは [email protected] まで、日本語版に関する質問は [email protected] までお送りください。
その他の質問については、まずは<a
href="faq.html">FAQ</a>をごらんください。</p>
<hr>
<span class="sidebar_title">Resources</span>
<p class="sidebar">
<a href="https://github.com/mnielsen/neural-networks-and-deep-learning">Code repository</a></p>
<p class="sidebar">
<a href="http://eepurl.com/BYr9L">Mailing list for book announcements</a>
</p>
<p class="sidebar">
<a href="http://eepurl.com/0Xxjb">Michael Nielsen's project announcement mailing list</a>
</p>
<hr>
<a href="http://michaelnielsen.org"><img src="assets/Michael_Nielsen_Web_Small.jpg" width="160px" style="border-style: none;"/></a>
<p class="sidebar">
著:<a href="http://michaelnielsen.org">Michael Nielsen</a> / 2014年9月-12月 <br > 訳:<a href="https://github.com/nnadl-ja/nnadl_site_ja">「ニューラルネットワークと深層学習」翻訳プロジェクト</a>
</p>
</div>
<!--<p>A big thankyou to all the supporters whose contributions have made this work possible. Supporters include:</p>-->
<p>著者と共にこの本を作り出してくださったサポーターの皆様に感謝いたします。</p>
<p>
<table style='border-spacing: 10px 0px;'><tr>
<td>Anonymous</td>
<td>Ivan Adanja</td>
<td>Kartik Agaram</td>
</tr>
<tr>
<td>Gui Ambros</td>
<td>Brent J. Anderson</td>
<td>Bennett Andrews</td>
</tr>
<tr>
<td>Philip H. Austin</td>
<td>Kyrylo Azhytskyi</td>
<td>Darius Bacon</td>
</tr>
<tr>
<td>Miëtek Bak</td>
<td>Thomas W. Ballinger</td>
<td>Pascal Belloncle</td>
</tr>
<tr>
<td>Nelson Batalha</td>
<td>Richard Baxter</td>
<td>Maxim Baz</td>
</tr>
<tr>
<td>Philippe Beaudoin</td>
<td>Marco Beri</td>
<td>Ariel Berwaldt</td>
</tr>
<tr>
<td>John Biesnecker</td>
<td>Mark Bloore</td>
<td>Paul Bloore</td>
</tr>
<tr>
<td>Aaron Paul Blossom</td>
<td>David Bonner</td>
<td>Leila Boujnane</td>
</tr>
<tr>
<td>Charles Brauer</td>
<td>Harrison Brown</td>
<td>Simon D. Burton</td>
</tr>
<tr>
<td>Nathan Campbell</td>
<td>Maria Del Carmen Anyo</td>
<td>Trey Causey</td>
</tr>
<tr>
<td>Alex Chamberlain</td>
<td>John Chaussard</td>
<td>Nikolay Chenkov</td>
</tr>
<tr>
<td>John Chia</td>
<td>Cheng kong Chit</td>
<td>Matias Varnum Christensen</td>
</tr>
<tr>
<td>Aaron Clauset</td>
<td>Dominic Cooney</td>
<td>Sidney Cox</td>
</tr>
<tr>
<td>Dominic Cummings</td>
<td>Paulo Darocha</td>
<td>Christopher Dawson</td>
</tr>
<tr>
<td>George Dean</td>
<td>Hendrik Demolder</td>
<td>Alexander v Dijk</td>
</tr>
<tr>
<td>Weiguang (Gavin) Ding</td>
<td>Amy Dodd</td>
<td>James K. Doherty</td>
</tr>
<tr>
<td>Michael J. Douglas</td>
<td>Daniel George Drumea</td>
<td>Igor Dzreyev</td>
</tr>
<tr>
<td>Jeff Elmore</td>
<td>Mark England</td>
<td>Brian Eoff</td>
</tr>
<tr>
<td>Geoff Ericksson</td>
<td>Daniel Fernandes</td>
<td>Chris Ferrie</td>
</tr>
<tr>
<td>Ivo Flipse</td>
<td>Jelle Foks</td>
<td>Mardini Fouad</td>
</tr>
<tr>
<td>Rod Frey</td>
<td>Curtis Frye</td>
<td>Manoel Galdino</td>
</tr>
<tr>
<td>Senthil Gandhi</td>
<td>Inmar Givoni</td>
<td>Jeffrey Gold</td>
</tr>
<tr>
<td>Vojimir Golem</td>
<td>Christopher Granade</td>
<td>Ilya Grigorik</td>
</tr>
<tr>
<td>Steven Grimm</td>
<td>Joel Grus</td>
<td>Miki Habryn</td>
</tr>
<tr>
<td>Ward M. Haggard</td>
<td>Russell Hanson</td>
<td>Kathryne Hawthorne</td>
</tr>
<tr>
<td>Frank Hecker</td>
<td>Pablo Loyola Heufemann</td>
<td>Jens Christian Hillerup</td>
</tr>
<tr>
<td>Isaac A. Hodes</td>
<td>J. Paul Hoest</td>
<td>Jordan Holcombe</td>
</tr>
<tr>
<td>Juan Rodriguez Hortala</td>
<td>Steve Houghton</td>
<td>Tommi Hovi</td>
</tr>
<tr>
<td>Jeremy Howard</td>
<td>Tatsuya Ishihara</td>
<td>Paweł Jacewicz</td>
</tr>
<tr>
<td>Amit Jain</td>
<td>Damian Jordan</td>
<td>Victor Joukov</td>
</tr>
<tr>
<td>Guilherme Juraszek</td>
<td>Erkin Kanlioglu</td>
<td>Bart Kastermans</td>
</tr>
<tr>
<td>Jason Kelly</td>
<td>Alasdair K. King</td>
<td>SGJ Kockelkoren</td>
</tr>
<tr>
<td>Douglas Kratky</td>
<td>Charles Krempeaux</td>
<td>Dragisa Krsmanovic</td>
</tr>
<tr>
<td>Jason Kyle</td>
<td>Samuel Lampa</td>
<td>Michael Lachanski</td>
</tr>
<tr>
<td>Alex Lang</td>
<td>Ethan Langevin</td>
<td>Elmar Langholz</td>
</tr>
<tr>
<td>Christian Langreiter</td>
<td>Eugene Lazutkin</td>
<td>Jimmy Lee</td>
</tr>
<tr>
<td>Matthew Leifer</td>
<td>Daniel Lemire</td>
<td>Fuzz Leonard</td>
</tr>
<tr>
<td>Anselm Levskaya</td>
<td>Joseph Lewis</td>
<td>Jian Liang</td>
</tr>
<tr>
<td>Greg Linden</td>
<td>Chris Lintott</td>
<td>Baiyang Liu</td>
</tr>
<tr>
<td>James Lloyd</td>
<td>Tobias Lohse</td>
<td>Damien Loïc</td>
</tr>
<tr>
<td>Sergey Lymar</td>
<td>Gholson J. Lyon</td>
<td>James McCoy</td>
</tr>
<tr>
<td>Brent McWatters</td>
<td>Jean Maillard</td>
<td>Benoit Maison</td>
</tr>
<tr>
<td>Vito Mandorino</td>
<td>Stephen Marney</td>
<td>Maurice Mauser</td>
</tr>
<tr>
<td>Spyridon Michalakis</td>
<td>Florian Minges</td>
<td>Melanie Mitchell</td>
</tr>
<tr>
<td>Takashi Miyazaki</td>
<td>Nathan Mosher</td>
<td>Mike Murray</td>
</tr>
<tr>
<td>Aditiyaa Nagarajan</td>
<td>Sandeep Nayak</td>
<td>Alexandru Nedel</td>
</tr>
<tr>
<td>Eric Amir Nichols</td>
<td>Ken Nickerson</td>
<td>Kate Nielsen</td>
</tr>
<tr>
<td>Wendy Nielsen</td>
<td>Michael Noll-Hussong</td>
<td>Antonio Macias Ojeda</td>
</tr>
<tr>
<td>Nicholas O'Neill</td>
<td>Tom Parslow</td>
<td>Joan Puigcerver i Perez</td>
</tr>
<tr>
<td>Juan Carlos Kuri Pinto</td>
<td>Uffe V. Poulsen</td>
<td>Brian Du Preez</td>
</tr>
<tr>
<td>Sujith Radhakrishna</td>
<td>Hannu Rajaniemi</td>
<td>Rahul Ravu</td>
</tr>
<tr>
<td>Julien Rebetez</td>
<td>Dave Revell</td>
<td>Brendan Rogers</td>
</tr>
<tr>
<td>Konstantin Root</td>
<td>Peter Rudenko</td>
<td>Cody Russell</td>
</tr>
<tr>
<td>Michael Russo</td>
<td>Ross Ryder</td>
<td>Arthur Safira</td>
</tr>
<tr>
<td>Josep Saldaña</td>
<td>Christopher Sammon</td>
<td>Andrés G. Saravia</td>
</tr>
<tr>
<td>Kathryn Schmitt</td>
<td>Maximilian Schoefmann</td>
<td>Tim Schröder</td>
</tr>
<tr>
<td>John D. Schulman</td>
<td>David Schwab</td>
<td>Jan Sedlák</td>
</tr>
<tr>
<td>Satish Shankar</td>
<td>Gareth Shepherd</td>
<td>Makimoto Shimpei</td>
</tr>
<tr>
<td>Ekaterina Shmeleva</td>
<td>Keith Siilats</td>
<td>Christopher Silvia</td>
</tr>
<tr>
<td>Leif-Gerrit Singer</td>
<td>Harkanwal Singh</td>
<td>Rajob K. Singh</td>
</tr>
<tr>
<td>John Skarha</td>
<td>Arfon Smith</td>
<td>Mark Smith</td>
</tr>
<tr>
<td>Ezekiel Smithburg</td>
<td>Xavier Snelgrove</td>
<td>Robert Solovay</td>
</tr>
<tr>
<td>Matthew Sottile</td>
<td>Chris Squibb</td>
<td>Helge Stahlmann</td>
</tr>
<tr>
<td>Jan Stette</td>
<td>John Stockton</td>
<td>Wim Stubbe</td>
</tr>
<tr>
<td>Timo Sulg</td>
<td>Dave Sullivan</td>
<td>Daniel Suo</td>
</tr>
<tr>
<td>James Tauber</td>
<td>Oskar Thorén</td>
<td>Ben Toner</td>
</tr>
<tr>
<td>Luke Toop</td>
<td>Christian Tschanz</td>
<td>Peter Tutelaers</td>
</tr>
<tr>
<td>Matthew Trentacoste</td>
<td>Alexander van Dijk</td>
<td>Gregg Vesonder</td>
</tr>
<tr>
<td>Ricardo Vidal</td>
<td>Wai Keen Vong</td>
<td>Will Walmsley</td>
</tr>
<tr>
<td>Georg Walther</td>
<td>Matt Wells</td>
<td>Karijn Wessing</td>
</tr>
<tr>
<td>Ryan Whitnah</td>
<td>Nick Williamson</td>
<td>Brett Witty</td>
</tr>
<tr>
<td>Charles Wooters</td>
<td>Yusuke Yambe</td>
<td>Artem Yankov</td>
</tr>
<tr>
<td>Doron Yotam</td>
<td>Benjamin Sichit Yu</td>
<td>Zolmeister</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</table></div><div class="footer"> <span class="left_footer"> In academic work,
please cite this book as: Michael A. Nielsen, "Neural Networks and
Deep Learning", Determination Press, 2015
<br/>
<br/>
This work is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB"
style="color: #eee;">Creative Commons Attribution-NonCommercial 3.0
Unported License</a>. This means you're free to copy, share, and
build on this book, but not to sell it. If you're interested in
commercial use, please <a
href="mailto:[email protected]">contact me</a>.
</span>
<span class="right_footer">
Last update: Sun Dec 21 14:49:05 2014
<br/>
<br/>
<br/>
<a rel="license" href="http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB"><img alt="Creative Commons Licence" style="border-width:0" src="http://i.creativecommons.org/l/by-nc/3.0/88x31.png" /></a>
</span>
</div>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-44208967-1', 'neuralnetworksanddeeplearning.com');
ga('send', 'pageview');
</script>
</body>
</html>