-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathbuffer.py
102 lines (72 loc) · 3.15 KB
/
buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import numpy as np
import torch
import warnings
class Buffer:
def __init__(self, d_state, d_action, ensemble_size, buffer_size):
"""
data buffer that holds transitions
Args:
d_state: dimensionality of state
d_action: dimensionality of action
buffer_size: maximum number of transitions to be stored (memory allocated at init)
"""
self.buffer_size = buffer_size
self.d_state = d_state
self.d_action = d_action
self.ensemble_size = ensemble_size
self.states = torch.zeros(buffer_size, d_state).float()
self.actions = torch.zeros(buffer_size, d_action).float()
self.state_deltas = torch.zeros(buffer_size, d_state).float()
self.normalizer = None
self._n_elements = 0
def setup_normalizer(self, normalizer):
self.normalizer = normalizer
def add(self, state, action, next_state):
"""
add transition to buffer
Args:
state: numpy vector of (d_state,) shape
action: numpy vector of (d_action,) shape
next_state: numpy vector of (d_state,) shape
"""
state, action, next_state = torch.from_numpy(state).float().clone(), torch.from_numpy(action).float().clone(), torch.from_numpy(next_state).float().clone()
state_delta = next_state - state
idx = self._n_elements % self.buffer_size
self.states[idx] = state
self.actions[idx] = action
self.state_deltas[idx] = state_delta
self._n_elements += 1
if self.normalizer is not None:
self.normalizer.update(state, action, state_delta)
if self._n_elements >= self.buffer_size:
warnings.warn("buffer full, rewriting over old samples")
def train_batches(self, batch_size):
"""
return an iterator of batches
Args:
batch_size: number of samples to be returned
Returns:
state of size (ensemble_size, n_samples, d_state)
action of size (ensemble_size, n_samples, d_action)
next state of size (ensemble_size, n_samples, d_state)
"""
num = len(self)
indices = [np.random.permutation(range(num)) for _ in range(self.ensemble_size)]
indices = np.stack(indices).T
for i in range(0, num, batch_size):
j = min(num, i + batch_size)
if (j - i) < batch_size and i != 0:
# drop last incomplete last batch
return
batch_size = j - i
batch_indices = indices[i:j]
batch_indices = batch_indices.flatten()
states = self.states[batch_indices]
actions = self.actions[batch_indices]
state_deltas = self.state_deltas[batch_indices]
states = states.reshape(self.ensemble_size, batch_size, self.d_state)
actions = actions.reshape(self.ensemble_size, batch_size, self.d_action)
state_deltas = state_deltas.reshape(self.ensemble_size, batch_size, self.d_state)
yield states, actions, state_deltas
def __len__(self):
return min(self._n_elements, self.buffer_size)