-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathno_pyo3_lib.rs
331 lines (285 loc) · 10.1 KB
/
no_pyo3_lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
use rustc_hash::FxHashMap;
// use serde_json;
use std::cell::RefCell;
use std::error::Error;
// use std::collections::HashMap;
use std::io::Write;
use std::{fs, str};
// type Map<K, V> = HashMap<K, V>;
type Map<K, V> = FxHashMap<K, V>;
type Rank = u32;
pub trait Tokenizer {
fn train(&mut self, text: &str, vocab_size: usize) -> Vec<Rank>;
fn encode(&self, text: &str) -> Vec<Rank>;
fn decode(&self, _input_ids: &[Rank]) -> String;
}
pub trait Normalize {
fn normalize(&self, text: &mut String);
}
pub struct DefaultNormalizer {}
impl DefaultNormalizer {
fn is_whitespace(&self, c: u8) -> bool {
c == b' ' || c == b'\t'
}
}
impl Normalize for DefaultNormalizer {
// https://stackoverflow.com/questions/71864137/whats-the-ideal-way-to-trim-extra-spaces-from-a-string
fn normalize(&self, text: &mut String) {
let mut prev = ' ';
text.retain(|x| {
let res = !self.is_whitespace(x as u8) || !self.is_whitespace(prev as u8);
prev = x;
res
});
}
}
pub struct BPETokenizer<T>
where
T: Normalize,
{
pub normalizer: T,
encoder: Map<(Rank, Rank), Rank>, //TODO: make private later
decoder: RefCell<Option<Map<Rank, (Rank, Rank)>>>,
}
fn _byte_pair_merge(pieces: &mut Vec<Rank>, find: (Rank, Rank), replace: Rank) {
let mut remove = Vec::new();
let mut prev: bool = true;
pieces.windows(2).enumerate().for_each(|(i, x)| {
if (x[0], x[1]) == find && prev {
remove.push(i + 1);
prev = false;
} else {
prev = true;
}
});
// println!("{:?}", remove);
for (j, i) in remove.iter().enumerate() {
pieces[i - j - 1] = replace;
pieces.remove(i - j);
}
}
// fn _byte_pair_merge(pieces: &mut Vec<Rank>, find: (Rank, Rank), replace: Rank) {
// let mut i = 0;
// while i < pieces.len() - 1 {
// if (pieces[i], pieces[i + 1]) == find {
// pieces[i] = replace;
// pieces.remove(i + 1);
// }
// i += 1;
// }
// }
// impl BPETokenizer<DefaultNormalizer> {
// pub fn new() -> Self {
// Self {
// normalizer: DefaultNormalizer {},
// encoder: Map::default(),
// decoder: RefCell::new(None),
// }
// }
// }
impl<T> BPETokenizer<T>
where
T: Normalize,
{
pub fn new(normalizer: T) -> Self {
Self {
normalizer,
encoder: Map::default(),
decoder: RefCell::new(None),
}
}
// pub fn from_pretrained(file: &str) -> Result<Self, Box<dyn Error>> {
// let mut tok = Self::new(DefaultNormalizer {});
// tok.load_encoder(file)?;
// Ok(tok)
// }
pub fn preprocess(&self, text: &mut String) {
self.normalizer.normalize(text);
}
pub fn save_encoder(&self, file: &str) -> Result<(), Box<dyn std::error::Error>> {
// need to reverse key-value order since serde can't serialize tuples as map keys
let decoder: Map<&Rank, &(Rank, Rank)> = self.encoder.iter().map(|(k, v)| (v, k)).collect();
let serialized = serde_json::to_string(&decoder)?;
let mut f = fs::File::create(file)?;
f.write_all(serialized.as_bytes())?;
Ok(())
}
pub fn load_encoder(&mut self, file: &str) -> Result<(), Box<dyn std::error::Error>> {
let encoder_str = fs::read_to_string(file)?;
let _encoder: Map<Rank, (Rank, Rank)> = serde_json::from_str(&encoder_str)?;
let encoder: Map<(Rank, Rank), Rank> = _encoder.iter().map(|(&k, &v)| (v, k)).collect();
self.encoder = encoder;
self.decoder = RefCell::new(Some(_encoder));
Ok(())
}
fn _encode_chunk(&self, chunk: &[u8]) -> Vec<Rank> {
let mut pieces: Vec<Rank> = chunk.to_vec().iter().map(|&x| x as Rank).collect();
loop {
let mut merges = Vec::new();
for i in 0..pieces.len() - 1 {
if let Some(&rank) = self.encoder.get(&(pieces[i], pieces[i + 1])) {
merges.push((i, rank));
}
}
if merges.is_empty() {
break;
}
// apply merges and swap in tokens from reverse
let mut i = merges.len() - 1;
while i > 0 {
let x = &mut merges[i - 1..=i];
let l = x[0];
let r = x[1];
if r.0 - l.0 > 1 && r.1 != Rank::MAX {
pieces[r.0] = r.1;
pieces.remove(r.0 + 1);
} else if r.1 < l.1 {
pieces[r.0] = r.1;
pieces.remove(r.0 + 1);
x[0].1 = Rank::MAX;
i -= 1;
}
//avoid overflow on usize 0-1
if i == 0 {
break;
}
i -= 1;
}
if merges.len() == 1 || merges[0].1 < merges[1].1 {
pieces[merges[0].0] = merges[0].1;
pieces.remove(merges[0].0 + 1);
}
}
pieces
}
fn _decode_chunk(&self, chunk: &[Rank]) -> Vec<u8> {
let mut pieces: Vec<Rank> = Vec::from(chunk);
let decoder: Map<Rank, (Rank, Rank)> = match self.decoder.borrow_mut().take() {
Some(d) => d,
None => self.encoder.iter().map(|(&k, &v)| (v, k)).collect(),
};
loop {
let mut demerges = Vec::new();
for i in 0..pieces.len() {
let rank = pieces[i];
if let Some(&tup) = decoder.get(&rank) {
demerges.push((i, tup));
}
}
// our tokenizer doesn't have by default 0-255 in the encoder
// so this stops when we're left with u8's only
if demerges.is_empty() {
break;
}
for op in demerges.iter().rev() {
let i = op.0;
let tup = op.1;
pieces[i] = tup.0;
pieces.insert(i + 1, tup.1);
}
}
//give back decoder
*self.decoder.borrow_mut() = Some(decoder);
pieces.iter().map(|&x| x as u8).collect()
}
}
impl<T> Tokenizer for BPETokenizer<T>
where
T: Normalize,
{
fn train(&mut self, text: &str, vocab_size: usize) -> Vec<Rank> {
assert!(vocab_size > 0);
let mut pieces: Vec<Rank>;
if !self.encoder.is_empty() {
println!("pretrained tokenizer detected!");
pieces = self.encode(text);
} else {
let text = text.as_bytes();
pieces = text.iter().map(|&i| i as Rank).collect();
}
for _ in tqdm::tqdm(0..vocab_size - self.encoder.len()) {
let mut counts: Map<(Rank, Rank), Rank> = Map::default();
for i in 0..pieces.len() - 1 {
*counts.entry((pieces[i], pieces[i + 1])).or_insert(0) += 1;
}
let (&p, _) = counts.iter().max_by_key(|(_, &c)| c).unwrap();
let token_id = (self.encoder.len() + 1 + 255) as Rank; // need 255 offset since ascii chars occupy 0-255
self.encoder.insert(p, token_id);
_byte_pair_merge(&mut pieces, p, token_id);
}
pieces
}
//TODO: add chunk_size arg or specify in config
fn encode(&self, text: &str) -> Vec<Rank> {
let text = text.as_bytes();
const CHUNK_SIZE: usize = 4 * 4096;
let mut encoded_chunks = Vec::new();
let z: usize = (text.len() % CHUNK_SIZE > 0) as usize;
for i in 0..text.len() / CHUNK_SIZE + z {
let chunk = &text[CHUNK_SIZE * i..usize::min(CHUNK_SIZE * (i + 1), text.len())];
// println!("{:?}", str::from_utf8(chunk));
encoded_chunks.push(self._encode_chunk(chunk));
}
encoded_chunks.into_iter().flatten().collect()
}
fn decode(&self, _input_ids: &[Rank]) -> String {
const CHUNK_SIZE: usize = 4096;
let mut decoded_chunks = Vec::new();
let z: usize = (_input_ids.len() % CHUNK_SIZE > 0) as usize;
for i in 0.._input_ids.len() / CHUNK_SIZE + z {
let chunk =
&_input_ids[CHUNK_SIZE * i..usize::min(CHUNK_SIZE * (i + 1), _input_ids.len())];
// println!("{:?}", str::from_utf8(chunk));
decoded_chunks.push(self._decode_chunk(chunk));
}
let utf8: Vec<u8> = decoded_chunks.into_iter().flatten().collect();
String::from(str::from_utf8(&utf8).unwrap())
}
// fn decode(&self, _input_ids: &[Rank]) -> String {
// //need to apply merge-outs in reverse order
// let decoder: Map<Rank, (Rank, Rank)> = match self.decoder.borrow_mut().take() {
// Some(d) => d,
// None => self.encoder.iter().map(|(&k, &v)| (v, k)).collect(),
// };
// let mut input_ids = Vec::from(_input_ids);
//
// for token in (255..256 + self.encoder.len()).rev() {
// let token = token as Rank;
//
// let mut i = 0;
// while i < input_ids.len() {
// if input_ids[i] == token {
// let pair = *decoder.get(&token).unwrap();
// input_ids[i] = pair.0;
// input_ids.insert(i + 1, pair.1);
// i += 1;
// }
// i += 1;
// }
// }
//
// //give back decoder
// *self.decoder.borrow_mut() = Some(decoder);
//
// let arr_u8: Vec<u8> = input_ids.iter().map(|&x| x as u8).collect();
// String::from(str::from_utf8(&arr_u8).unwrap())
// }
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_encode_decode() {
let mut tok = BPETokenizer::new(DefaultNormalizer {});
let _ = tok.load_encoder("wikibpe.json");
let text = String::from("this is an example. 😎");
assert_eq!(text, tok.decode(&tok.encode(&text)));
}
#[test]
fn test_compression() {
let mut tok = BPETokenizer::new(DefaultNormalizer {});
let _ = tok.load_encoder("wikibpe.json");
let text = String::from("this is an example. 😎");
assert!(text.len() > tok.encode(&text).len());
}
}