-
Notifications
You must be signed in to change notification settings - Fork 200
/
engine.py
43 lines (40 loc) · 1.92 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch.optim as optim
from model import *
import util
class trainer():
def __init__(self, scaler, in_dim, seq_length, num_nodes, nhid , dropout, lrate, wdecay, device, supports, gcn_bool, addaptadj, aptinit):
self.model = gwnet(device, num_nodes, dropout, supports=supports, gcn_bool=gcn_bool, addaptadj=addaptadj, aptinit=aptinit, in_dim=in_dim, out_dim=seq_length, residual_channels=nhid, dilation_channels=nhid, skip_channels=nhid * 8, end_channels=nhid * 16)
self.model.to(device)
self.optimizer = optim.Adam(self.model.parameters(), lr=lrate, weight_decay=wdecay)
self.loss = util.masked_mae
self.scaler = scaler
self.clip = 5
def train(self, input, real_val):
self.model.train()
self.optimizer.zero_grad()
input = nn.functional.pad(input,(1,0,0,0))
output = self.model(input)
output = output.transpose(1,3)
#output = [batch_size,12,num_nodes,1]
real = torch.unsqueeze(real_val,dim=1)
predict = self.scaler.inverse_transform(output)
loss = self.loss(predict, real, 0.0)
loss.backward()
if self.clip is not None:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip)
self.optimizer.step()
mape = util.masked_mape(predict,real,0.0).item()
rmse = util.masked_rmse(predict,real,0.0).item()
return loss.item(),mape,rmse
def eval(self, input, real_val):
self.model.eval()
input = nn.functional.pad(input,(1,0,0,0))
output = self.model(input)
output = output.transpose(1,3)
#output = [batch_size,12,num_nodes,1]
real = torch.unsqueeze(real_val,dim=1)
predict = self.scaler.inverse_transform(output)
loss = self.loss(predict, real, 0.0)
mape = util.masked_mape(predict,real,0.0).item()
rmse = util.masked_rmse(predict,real,0.0).item()
return loss.item(),mape,rmse