-
Notifications
You must be signed in to change notification settings - Fork 221
/
train_single_step.py
235 lines (201 loc) · 9.96 KB
/
train_single_step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import argparse
import math
import time
import torch
import torch.nn as nn
from net import gtnet
import numpy as np
import importlib
from util import *
from trainer import Optim
def evaluate(data, X, Y, model, evaluateL2, evaluateL1, batch_size):
model.eval()
total_loss = 0
total_loss_l1 = 0
n_samples = 0
predict = None
test = None
for X, Y in data.get_batches(X, Y, batch_size, False):
X = torch.unsqueeze(X,dim=1)
X = X.transpose(2,3)
with torch.no_grad():
output = model(X)
output = torch.squeeze(output)
if len(output.shape)==1:
output = output.unsqueeze(dim=0)
if predict is None:
predict = output
test = Y
else:
predict = torch.cat((predict, output))
test = torch.cat((test, Y))
scale = data.scale.expand(output.size(0), data.m)
total_loss += evaluateL2(output * scale, Y * scale).item()
total_loss_l1 += evaluateL1(output * scale, Y * scale).item()
n_samples += (output.size(0) * data.m)
rse = math.sqrt(total_loss / n_samples) / data.rse
rae = (total_loss_l1 / n_samples) / data.rae
predict = predict.data.cpu().numpy()
Ytest = test.data.cpu().numpy()
sigma_p = (predict).std(axis=0)
sigma_g = (Ytest).std(axis=0)
mean_p = predict.mean(axis=0)
mean_g = Ytest.mean(axis=0)
index = (sigma_g != 0)
correlation = ((predict - mean_p) * (Ytest - mean_g)).mean(axis=0) / (sigma_p * sigma_g)
correlation = (correlation[index]).mean()
return rse, rae, correlation
def train(data, X, Y, model, criterion, optim, batch_size):
model.train()
total_loss = 0
n_samples = 0
iter = 0
for X, Y in data.get_batches(X, Y, batch_size, True):
model.zero_grad()
X = torch.unsqueeze(X,dim=1)
X = X.transpose(2,3)
if iter % args.step_size == 0:
perm = np.random.permutation(range(args.num_nodes))
num_sub = int(args.num_nodes / args.num_split)
for j in range(args.num_split):
if j != args.num_split - 1:
id = perm[j * num_sub:(j + 1) * num_sub]
else:
id = perm[j * num_sub:]
id = torch.tensor(id).to(device)
tx = X[:, :, id, :]
ty = Y[:, id]
output = model(tx,id)
output = torch.squeeze(output)
scale = data.scale.expand(output.size(0), data.m)
scale = scale[:,id]
loss = criterion(output * scale, ty * scale)
loss.backward()
total_loss += loss.item()
n_samples += (output.size(0) * data.m)
grad_norm = optim.step()
if iter%100==0:
print('iter:{:3d} | loss: {:.3f}'.format(iter,loss.item()/(output.size(0) * data.m)))
iter += 1
return total_loss / n_samples
parser = argparse.ArgumentParser(description='PyTorch Time series forecasting')
parser.add_argument('--data', type=str, default='./data/solar_AL.txt',
help='location of the data file')
parser.add_argument('--log_interval', type=int, default=2000, metavar='N',
help='report interval')
parser.add_argument('--save', type=str, default='model/model.pt',
help='path to save the final model')
parser.add_argument('--optim', type=str, default='adam')
parser.add_argument('--L1Loss', type=bool, default=True)
parser.add_argument('--normalize', type=int, default=2)
parser.add_argument('--device',type=str,default='cuda:1',help='')
parser.add_argument('--gcn_true', type=bool, default=True, help='whether to add graph convolution layer')
parser.add_argument('--buildA_true', type=bool, default=True, help='whether to construct adaptive adjacency matrix')
parser.add_argument('--gcn_depth',type=int,default=2,help='graph convolution depth')
parser.add_argument('--num_nodes',type=int,default=137,help='number of nodes/variables')
parser.add_argument('--dropout',type=float,default=0.3,help='dropout rate')
parser.add_argument('--subgraph_size',type=int,default=20,help='k')
parser.add_argument('--node_dim',type=int,default=40,help='dim of nodes')
parser.add_argument('--dilation_exponential',type=int,default=2,help='dilation exponential')
parser.add_argument('--conv_channels',type=int,default=16,help='convolution channels')
parser.add_argument('--residual_channels',type=int,default=16,help='residual channels')
parser.add_argument('--skip_channels',type=int,default=32,help='skip channels')
parser.add_argument('--end_channels',type=int,default=64,help='end channels')
parser.add_argument('--in_dim',type=int,default=1,help='inputs dimension')
parser.add_argument('--seq_in_len',type=int,default=24*7,help='input sequence length')
parser.add_argument('--seq_out_len',type=int,default=1,help='output sequence length')
parser.add_argument('--horizon', type=int, default=3)
parser.add_argument('--layers',type=int,default=5,help='number of layers')
parser.add_argument('--batch_size',type=int,default=32,help='batch size')
parser.add_argument('--lr',type=float,default=0.0001,help='learning rate')
parser.add_argument('--weight_decay',type=float,default=0.00001,help='weight decay rate')
parser.add_argument('--clip',type=int,default=5,help='clip')
parser.add_argument('--propalpha',type=float,default=0.05,help='prop alpha')
parser.add_argument('--tanhalpha',type=float,default=3,help='tanh alpha')
parser.add_argument('--epochs',type=int,default=1,help='')
parser.add_argument('--num_split',type=int,default=1,help='number of splits for graphs')
parser.add_argument('--step_size',type=int,default=100,help='step_size')
args = parser.parse_args()
device = torch.device(args.device)
torch.set_num_threads(3)
def main():
Data = DataLoaderS(args.data, 0.6, 0.2, device, args.horizon, args.seq_in_len, args.normalize)
model = gtnet(args.gcn_true, args.buildA_true, args.gcn_depth, args.num_nodes,
device, dropout=args.dropout, subgraph_size=args.subgraph_size,
node_dim=args.node_dim, dilation_exponential=args.dilation_exponential,
conv_channels=args.conv_channels, residual_channels=args.residual_channels,
skip_channels=args.skip_channels, end_channels= args.end_channels,
seq_length=args.seq_in_len, in_dim=args.in_dim, out_dim=args.seq_out_len,
layers=args.layers, propalpha=args.propalpha, tanhalpha=args.tanhalpha, layer_norm_affline=False)
model = model.to(device)
print(args)
print('The recpetive field size is', model.receptive_field)
nParams = sum([p.nelement() for p in model.parameters()])
print('Number of model parameters is', nParams, flush=True)
if args.L1Loss:
criterion = nn.L1Loss(size_average=False).to(device)
else:
criterion = nn.MSELoss(size_average=False).to(device)
evaluateL2 = nn.MSELoss(size_average=False).to(device)
evaluateL1 = nn.L1Loss(size_average=False).to(device)
best_val = 10000000
optim = Optim(
model.parameters(), args.optim, args.lr, args.clip, lr_decay=args.weight_decay
)
# At any point you can hit Ctrl + C to break out of training early.
try:
print('begin training')
for epoch in range(1, args.epochs + 1):
epoch_start_time = time.time()
train_loss = train(Data, Data.train[0], Data.train[1], model, criterion, optim, args.batch_size)
val_loss, val_rae, val_corr = evaluate(Data, Data.valid[0], Data.valid[1], model, evaluateL2, evaluateL1,
args.batch_size)
print(
'| end of epoch {:3d} | time: {:5.2f}s | train_loss {:5.4f} | valid rse {:5.4f} | valid rae {:5.4f} | valid corr {:5.4f}'.format(
epoch, (time.time() - epoch_start_time), train_loss, val_loss, val_rae, val_corr), flush=True)
# Save the model if the validation loss is the best we've seen so far.
if val_loss < best_val:
with open(args.save, 'wb') as f:
torch.save(model, f)
best_val = val_loss
if epoch % 5 == 0:
test_acc, test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1,
args.batch_size)
print("test rse {:5.4f} | test rae {:5.4f} | test corr {:5.4f}".format(test_acc, test_rae, test_corr), flush=True)
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
with open(args.save, 'rb') as f:
model = torch.load(f)
vtest_acc, vtest_rae, vtest_corr = evaluate(Data, Data.valid[0], Data.valid[1], model, evaluateL2, evaluateL1,
args.batch_size)
test_acc, test_rae, test_corr = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1,
args.batch_size)
print("final test rse {:5.4f} | test rae {:5.4f} | test corr {:5.4f}".format(test_acc, test_rae, test_corr))
return vtest_acc, vtest_rae, vtest_corr, test_acc, test_rae, test_corr
if __name__ == "__main__":
vacc = []
vrae = []
vcorr = []
acc = []
rae = []
corr = []
for i in range(10):
val_acc, val_rae, val_corr, test_acc, test_rae, test_corr = main()
vacc.append(val_acc)
vrae.append(val_rae)
vcorr.append(val_corr)
acc.append(test_acc)
rae.append(test_rae)
corr.append(test_corr)
print('\n\n')
print('10 runs average')
print('\n\n')
print("valid\trse\trae\tcorr")
print("mean\t{:5.4f}\t{:5.4f}\t{:5.4f}".format(np.mean(vacc), np.mean(vrae), np.mean(vcorr)))
print("std\t{:5.4f}\t{:5.4f}\t{:5.4f}".format(np.std(vacc), np.std(vrae), np.std(vcorr)))
print('\n\n')
print("test\trse\trae\tcorr")
print("mean\t{:5.4f}\t{:5.4f}\t{:5.4f}".format(np.mean(acc), np.mean(rae), np.mean(corr)))
print("std\t{:5.4f}\t{:5.4f}\t{:5.4f}".format(np.std(acc), np.std(rae), np.std(corr)))