Skip to content

Latest commit

 

History

History
104 lines (78 loc) · 6.87 KB

llama_benchmarking.md

File metadata and controls

104 lines (78 loc) · 6.87 KB

How to benchmark Llama 3.1

In order to benchmark Llama 3.1 prefill and decode, you will need these artifacts for sharded (Tensor Parallel (TP)=8) or unsharded (TP=1):

  1. irpa file(s)
  2. IR
  3. numpy inputs

1. Get the irpa files

Create a SAS token in Azure:

  • Go to the sharkblobs storage account in the Azure portal
  • In the Security + networking dropdown, click Shared access signature
  • Under Allowed resource types select Service, Container, and Object
  • Scroll down to the bottom and select Generate SAS and connection string
  • Scroll down and Copy the SAS token
  • Replace [Add your SAS token here] (inclduing the [ and ]) by SAS token string in instructions below

Unsharded:

azcopy copy 'https://sharkblobs.blob.core.windows.net/halo-models/llm-dev/llama3_8b/8b_f16.irpa?[Add SAS token here]' '8b_f16.irpa'

If you have trouble accessing sharkblobs, you can copy the 8b f16 unsharded irpa file from the SharkMi300x machine:

scp [email protected]:/data/llama3.1/weights/8b/fp16/llama3.1_8b_fp16.irpa 8b_f16.irpa

Sharded - If you want to create your own tp8 sharded irpa files use this command:

python3 -m sharktank.examples.sharding.shard_llm_dataset --irpa-file 8b_fp16.irpa --output-irpa 8b_fp16_tp8.irpa --tensor-parallelism-size 8

Larger sharded irpa files (e.g. 70b, 405b) will be stored in sharkblobs soon. Otherwise, you can copy the 70b/405b f16 sharded irpa files from the SharkMi300x machine (long copy time):

scp [email protected]:/data/llama3.1/weights/405b/fp16/tp8/* .

2. Generate the IR

a. Clone shark-ai:

git clone https://github.com/nod-ai/shark-ai.git

b. Set up env: https://github.com/nod-ai/shark-ai/blob/main/docs/developer_guide.md#setup-a-venv

c. Generate the IR for prefill only (remove --skip-decode flag for both prefill + decode).

Unsharded:

python3 -m sharktank.examples.export_paged_llm_v1 --bs=4 --irpa-file=8b_f16.irpa --output-mlir=8b_f16_prefill_nondecomposed.mlir --output-config=8b_f16_prefill_nondecomposed.json --attention-kernel=torch --skip-decode

Sharded - You need to use the unranked sharded irpa file to generate the sharded IR:

python3 -m sharktank.examples.export_paged_llm_v1 --bs=4 --irpa-file=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.irpa --output-mlir=405b_f16_prefill_tp8_nondecomposed.mlir --output-config=405b_f16_prefill_tp8_nondecomposed.json --attention-kernel=torch --skip-decode

3. Get the numpy inputs

Get the 8b f16 tp1 unsharded numpy inputs: get_8b_f16_tp1_numpy_inputs.sh

Get the 8b f16 tp8 sharded numpy inputs: get_8b_f16_tp8_numpy_inputs.sh

4. Compile command

Unsharded:

../iree-build-no-trace/tools/iree-compile 8b_f16_prefill_nondecomposed.mlir --iree-hip-target=gfx942 -o=prefill_8b.vmfb --iree-hal-target-device=hip --iree-dispatch-creation-enable-aggressive-fusion=true --iree-global-opt-propagate-transposes=true --iree-opt-aggressively-propagate-transposes=true --iree-opt-data-tiling=false --iree-preprocessing-pass-pipeline='builtin.module(util.func(iree-preprocessing-generalize-linalg-matmul-experimental))' --iree-hal-indirect-command-buffers=true --iree-stream-resource-memory-model=discrete --iree-hip-legacy-sync=false --iree-hal-memoization=true --iree-opt-strip-assertions

Sharded:

../iree-build-no-trace/tools/iree-compile 405b_f16_prefill_tp8_nondecomposed.mlir --iree-hip-target=gfx942 -o=prefill_405b_tp8.vmfb --iree-hal-target-device=hip[0] --iree-hal-target-device=hip[1] --iree-hal-target-device=hip[2] --iree-hal-target-device=hip[3] --iree-hal-target-device=hip[4] --iree-hal-target-device=hip[5] --iree-hal-target-device=hip[6] --iree-hal-target-device=hip[7] --iree-dispatch-creation-enable-aggressive-fusion=true --iree-global-opt-propagate-transposes=true --iree-opt-aggressively-propagate-transposes=true --iree-opt-data-tiling=false --iree-preprocessing-pass-pipeline='builtin.module(util.func(iree-preprocessing-generalize-linalg-matmul-experimental))' --iree-hal-indirect-command-buffers=true --iree-stream-resource-memory-model=discrete --iree-hip-legacy-sync=false --iree-hal-memoization=true --iree-opt-strip-assertions

5. Benchmark command

Unsharded:

ROCR_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ ../iree-build-no-trace/tools/iree-benchmark-module \ --hip_use_streams=true \ --device_allocator=caching \ --module=prefill_8b.vmfb \ --parameters=model=8b_fp16.irpa \ --device=hip://4 \ --function=prefill_bs4 \ --input=@/data/llama-3.1/weights/8b/prefill_args_bs4_128/random_tokens.npy \ --input=@/data/llama-3.1/weights/8b/prefill_args_bs4_128/seq_lens.npy \ --input=@/data/llama-3.1/weights/8b/prefill_args_bs4_128/seq_block_ids.npy \ --input=@/data/llama-3.1/weights/8b/prefill_args_bs4_128/cs_f16.npy \ --benchmark_repetitions=3

Sharded:

ROCR_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ../iree-build-no-trace/tools/iree-run-module --hip_use_streams=true --device_allocator=caching --module=prefill_405b_tp8.vmfb --parameters=model=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.irpa --parameters=model=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.rank0.irpa --parameters=model=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.rank1.irpa --parameters=model=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.rank2.irpa --parameters=model=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.rank3.irpa --parameters=model=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.rank4.irpa --parameters=model=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.rank5.irpa --parameters=model=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.rank6.irpa --parameters=model=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.rank7.irpa --device=hip://0 --device=hip://1 --device=hip://2 --device=hip://3 --device=hip://4 --device=hip://5 --device=hip://6 --device=hip://7 --function=prefill_bs4 --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/random_tokens.npy --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/seq_lens.npy --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/seq_block_ids.npy --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_0.npy --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_1.npy --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_2.npy --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_3.npy --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_4.npy --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_5.npy --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_6.npy --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_7.npy