Skip to content

Latest commit

 

History

History
225 lines (195 loc) · 8.55 KB

llama_benchmarking.md

File metadata and controls

225 lines (195 loc) · 8.55 KB

How to benchmark Llama 3.1

In order to benchmark Llama 3.1 prefill and decode, you will need these artifacts for unsharded (TP=1) benchmarks:

  1. irpa file(s)
  2. IR
  3. prefill numpy inputs
  4. decode numpy inputs

0. Set up venv

a. Clone shark-ai:

git clone https://github.com/nod-ai/shark-ai.git

b. Set up env: https://github.com/nod-ai/shark-ai/blob/main/docs/developer_guide.md#setup-a-venv

1. Get the unsharded irpa files

Create a SAS token in Azure:

  • Go to the sharkblobs storage account in the Azure portal
  • In the Security + networking dropdown, click Shared access signature
  • Under Allowed resource types select Service, Container, and Object
  • Scroll down to the bottom and select Generate SAS and connection string
  • Scroll down and Copy the SAS token
  • Replace [Add your SAS token here] (including the [ and ]) by SAS token string in instructions below
azcopy copy \
'https://sharkblobs.blob.core.windows.net/halo-models/llm-dev/llama3_8b/8b_f16.irpa?[Add SAS token here]' \
'8b_f16.irpa'

If you have trouble accessing sharkblobs, you can copy the 8b f16 unsharded irpa file from the SharkMi300x machine:

scp [email protected]:/data/llama3.1/weights/8b/fp16/llama3.1_8b_fp16.irpa 8b_f16.irpa

2. Generate the IR

a. To generate the IR for prefill only:

python3 -m sharktank.examples.export_paged_llm_v1 \
  --bs=4 \
  --irpa-file=8b_f16.irpa \
  --output-mlir=8b_f16_prefill_nondecomposed.mlir \
  --output-config=8b_f16_prefill_nondecomposed.json \
  --attention-kernel=torch \
  --skip-decode \
  --block-seq-stride=32

To generate the IR for both prefill + decode (remove the --skip-decode flag):

python3 -m sharktank.examples.export_paged_llm_v1 \
  --bs=4 \
  --irpa-file=8b_f16.irpa \
  --output-mlir=8b_f16_prefill_nondecomposed.mlir \
  --output-config=8b_f16_prefill_nondecomposed.json \
  --attention-kernel=torch \
  --block-seq-stride=32

3. Get the numpy inputs

Get the 8b f16 tp1 unsharded prefill numpy inputs: get_8b_f16_tp1_prefill_inputs.sh

Get the 8b f16 tp1 unsharded decode numpy inputs: get_8b_f16_tp1_decode_inputs.sh

4. Compile command

This command compiles the full IR (both prefill + decode) into a vmfb.

../iree-build-no-trace/tools/iree-compile 8b_f16_prefill_nondecomposed.mlir \
  --iree-hip-target=gfx942 \
  -o=prefill_8b.vmfb \
  --iree-hal-target-device=hip \
  --iree-dispatch-creation-enable-aggressive-fusion=true \
  --iree-global-opt-propagate-transposes=true \
  --iree-opt-aggressively-propagate-transposes=true \
  --iree-opt-data-tiling=false \
  --iree-preprocessing-pass-pipeline='builtin.module(util.func(iree-preprocessing-generalize-linalg-matmul-experimental))' \
  --iree-hal-indirect-command-buffers=true \
  --iree-stream-resource-memory-model=discrete \
  --iree-hip-legacy-sync=false \
  --iree-hal-memoization=true \
  --iree-opt-strip-assertions

5. Benchmark command

In order to benchmark prefill, make sure you specify the function as prefill_bs{batch_size} and specify the 4 inputs using the numpy files in prefill_args_bs4_128_stride_32.

Prefill benchmark command:

ROCR_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
  ../iree-build-no-trace/tools/iree-benchmark-module \
  --hip_use_streams=true \
  --device_allocator=caching \
  --module=prefill_8b.vmfb \
  --parameters=model=8b_fp16.irpa \
  --device=hip://4 \
  --function=prefill_bs4 \
  --input=@prefill_args_bs4_128_stride_32/tokens.npy \
  --input=@prefill_args_bs4_128_stride_32/seq_lens.npy \
  --input=@prefill_args_bs4_128_stride_32/seq_block_ids.npy \
  --input=@prefill_args_bs4_128_stride_32/cs_f16.npy \
  --benchmark_repetitions=3

In order to benchmark decode, make sure you specify the function as decode_bs{batch_size} and specify the 5 inputs using the numpy files in decode_args_bs4_128_stride_32.

Decode benchmark command:

ROCR_VISIBLE_DEVICES=0,1,2,3,4,5,6,7  \
  ../iree-build-no-trace/tools/iree-benchmark-module \
  --hip_use_streams=true \
  --device_allocator=caching \
  --module=8b_f16_nondecomposed_32.vmfb \
  --parameters=model=8b_fp16.irpa \
  --device=hip://4 \
  --function=decode_bs4 \
  --input=@decode_args_bs4_128_stride_32/next_tokens.npy \
  --input=@decode_args_bs4_128_stride_32/seq_lens.npy \
  --input=@decode_args_bs4_128_stride_32/start_positions.npy \
  --input=@decode_args_bs4_128_stride_32/seq_block_ids.npy \
  --input=@decode_args_bs4_128_stride_32/cs_f16.npy \
  --benchmark_repetitions=3

Sharded

Sharded - If you want to create your own tp8 sharded irpa files use this command:

python3 -m sharktank.examples.sharding.shard_llm_dataset \
  --irpa-file 8b_fp16.irpa \
  --output-irpa 8b_fp16_tp8.irpa \
  --tensor-parallelism-size 8

Larger sharded irpa files (e.g. 70b, 405b) will be stored in sharkblobs soon. Otherwise, you can copy the 70b/405b f16 sharded irpa files from the SharkMi300x machine (long copy time):

scp [email protected]:/data/llama3.1/weights/405b/fp16/tp8/* .

Sharded - You need to use the unranked sharded irpa file to generate the sharded IR:

python3 -m sharktank.examples.export_paged_llm_v1 \
  --bs=4 \
  --irpa-file=/shark-dev/405b/llama3.1_405b_fp16_tp8_parameters.irpa \
  --output-mlir=405b_f16_prefill_tp8_nondecomposed.mlir \
  --output-config=405b_f16_prefill_tp8_nondecomposed.json \
  --attention-kernel=torch \
  --skip-decode

Get the 8b f16 tp8 sharded numpy inputs: get_8b_f16_tp8_numpy_inputs.sh

Sharded compile command:

../iree-build-no-trace/tools/iree-compile \
  405b_f16_prefill_tp8_nondecomposed.mlir \
  --iree-hip-target=gfx942 \
  -o=prefill_405b_tp8.vmfb \
  --iree-hal-target-device=hip[0] \
  --iree-hal-target-device=hip[1] \
  --iree-hal-target-device=hip[2] \
  --iree-hal-target-device=hip[3] \
  --iree-hal-target-device=hip[4] \
  --iree-hal-target-device=hip[5] \
  --iree-hal-target-device=hip[6] \
  --iree-hal-target-device=hip[7] \
  --iree-dispatch-creation-enable-aggressive-fusion=true \
  --iree-global-opt-propagate-transposes=true \
  --iree-opt-aggressively-propagate-transposes=true \
  --iree-opt-data-tiling=false \
  --iree-preprocessing-pass-pipeline='builtin.module(util.func(iree-preprocessing-generalize-linalg-matmul-experimental))' \
  --iree-hal-indirect-command-buffers=true \
  --iree-stream-resource-memory-model=discrete \
  --iree-hip-legacy-sync=false \
  --iree-hal-memoization=true \
  --iree-opt-strip-assertions

Sharded run compile:

ROCR_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
  ../iree-build-no-trace/tools/iree-run-module \
  --hip_use_streams=true \
  --device_allocator=caching \
  --module=prefill_405b_tp8.vmfb \
  --parameters=model=llama3.1_405b_fp16_tp8_parameters.irpa \
  --parameters=model=llama3.1_405b_fp16_tp8_parameters.rank0.irpa \
  --parameters=model=llama3.1_405b_fp16_tp8_parameters.rank1.irpa \
  --parameters=model=llama3.1_405b_fp16_tp8_parameters.rank2.irpa \
  --parameters=model=llama3.1_405b_fp16_tp8_parameters.rank3.irpa \
  --parameters=model=llama3.1_405b_fp16_tp8_parameters.rank4.irpa \
  --parameters=model=llama3.1_405b_fp16_tp8_parameters.rank5.irpa \
  --parameters=model=llama3.1_405b_fp16_tp8_parameters.rank6.irpa \
  --parameters=model=llama3.1_405b_fp16_tp8_parameters.rank7.irpa \
  --device=hip://0 \
  --device=hip://1 \
  --device=hip://2 \
  --device=hip://3 \
  --device=hip://4 \
  --device=hip://5 \
  --device=hip://6 \
  --device=hip://7 \
  --function=prefill_bs4 \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/random_tokens.npy \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/seq_lens.npy \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/seq_block_ids.npy \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_0.npy \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_1.npy \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_2.npy \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_3.npy \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_4.npy \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_5.npy \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_6.npy \
  --input=@/data/llama3.1/weights/405b/prefill_args_bs4_128/cs_f16_shard_7.npy