forked from CSTR-Edinburgh/ophelia
-
Notifications
You must be signed in to change notification settings - Fork 8
/
architectures.py
650 lines (531 loc) · 32.6 KB
/
architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
# -*- coding: utf-8 -*-
#!/usr/bin/env python2
'''
Based on code by kyubyong park at https://www.github.com/kyubyong/dc_tts
'''
from data_load import get_batch, load_vocab, load_data
from networks import Audio2Emo, TextEnc, AudioEnc, AudioDec, Attention, Attention_reparametrized, SSRN, FixedAttention, LinearTransformLabels, VAE, vae_weight
import tensorflow as tf
from utils import get_global_attention_guide, learning_rate_decay
import pdb
import os
import numpy as np
from tqdm import tqdm
import librosa
import inspect
def getLineInfo():
print(inspect.stack()[1][1],":",inspect.stack()[1][2],":",
inspect.stack()[1][3])
class Graph(object):
def __init__(self, hp, mode="train", load_in_memory=True, reuse=None):
assert mode in ['train', 'synthesize', 'generate_attention']
self.mode = mode
self.training = True if mode=="train" else False
self.reuse = reuse
self.hp = hp
self.load_in_memory=load_in_memory
#self.add_data(reuse=reuse) ## TODO: reuse??
self.build_model()
if self.training:
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.build_loss()
self.build_training_scheme()
def load_data_in_memory(self, model='t2m'):
if self.hp.prepro and self.mode=='train' and self.load_in_memory:
self.dataset = load_data(self.hp)
mels={}
if model=='ssrn': mags={}
fpaths = self.dataset['fpaths']
getLineInfo()
print('Loading data in memory')
for fpath in tqdm(fpaths):
fn,mel,mag=self.load_spectrograms_in_memory(fpath, audio_extension=fpath.split('.')[-1], model=model)
mels[fn.split('.')[0]]=mel
if model=='ssrn': mags[fn.split('.')[0]]=mag
self.data={}
self.data['mel']=mels
if model=='ssrn': self.data['mag']=mags
def load_spectrograms_in_memory(self, fpath, audio_extension='wav', model='t2m'):
try:
fname = os.path.basename(fpath)
except TypeError:
fname = os.path.basename(fpath.decode('utf-8'))
try:
mel = "{}/{}".format(self.hp.coarse_audio_dir, fname.replace(audio_extension, "npy"))
mag = "{}/{}".format(self.hp.full_audio_dir, fname.replace(audio_extension, "npy"))
except TypeError:
# in python 3, we have to do this because of this: https://docs.python.org/3/howto/pyporting.html#text-versus-binary-data
mel = "{}/{}".format(self.hp.coarse_audio_dir, fname.decode('utf-8').replace(audio_extension, "npy"))
mag = "{}/{}".format(self.hp.full_audio_dir, fname.decode('utf-8').replace(audio_extension, "npy"))
if 0:
print ('mag file:')
print (mag)
print (np.load(mag).shape)
if model=='ssrn':
mag_loaded=np.load(mag)
else:
mag_loaded=None
return fname, np.load(mel), mag_loaded
def load_wavs_in_memory(self, fpath, audio_extension='wav'):
try:
fname = os.path.basename(fpath)
except TypeError:
fname = os.path.basename(fpath.decode('utf-8'))
try:
wav = fpath
wav_GL = "{}/{}".format(self.hp.wav_GL_dir, fname)
except TypeError:
# in python 3, we have to do this because of this: https://docs.python.org/3/howto/pyporting.html#text-versus-binary-data
wav = fpath.decode('utf-8')
wav_GL = "{}/{}".format(self.hp.wav_GL_dir, fname.decode('utf-8'))
if 0:
print ('mag file:')
print (mag)
print (np.load(mag).shape)
return fname, librosa.load(wav)[0], librosa.load(wav_GL)[0]
def add_data(self, reuse=None, model='t2m'):
'''
Add either variables (for training) or placeholders (for synthesis) to the graph
'''
# Data Feeding
## L: Text. (B, N), int32
## mels: Reduced melspectrogram. (B, T/r, n_mels) float32
## mags: Magnitude. (B, T, n_fft//2+1) float32
getLineInfo()
print('Adding variables to model')
hp = self.hp
if self.mode is 'train':
if not self.load_in_memory:
print('Data not loaded in memory, it will be read on disk')
batchdict = get_batch(hp, self.get_batchsize())
else:
print('Data loaded in memory, it will not be accessed later on disk')
batchdict = get_batch(hp, self.get_batchsize(), dataset=self.dataset, data=self.data, model=model)
if 0: print (batchdict) ; print (batchdict.keys()) ; sys.exit('vsfbd')
self.L, self.mels, self.fnames, self.num_batch = \
batchdict['text'], batchdict['mel'], batchdict['fname'], batchdict['num_batch']
if model=='ssrn':
self.mags=batchdict['mag']
if hp.multispeaker:
## check multispeaker config is valid:- TODO: to config validation?
for position in hp.multispeaker:
assert position in ['text_encoder_input', 'text_encoder_towards_end', \
'audio_decoder_input', 'ssrn_input', 'audio_encoder_input',\
'learn_channel_contributions', 'speaker_dependent_phones']
self.speakers = batchdict['speaker']
else:
self.speakers = None
if hp.attention_guide_dir:
self.gts = batchdict['attention_guide']
else:
self.gts = tf.convert_to_tensor(get_global_attention_guide(hp))
if hp.use_external_durations:
self.durations = batchdict['duration']
if hp.merlin_label_dir:
self.merlin_label = batchdict['merlin_label']
if 'position_in_phone' in hp.history_type:
self.position_in_phone = batchdict['position_in_phone']
batchsize = self.get_batchsize()
self.prev_max_attentions = tf.ones(shape=(batchsize,), dtype=tf.int32)
## TODO refactor to remove redundancy between the next 2 branches?
elif self.mode is 'synthesize': # synthesis
self.L = tf.placeholder(tf.int32, shape=(None, None))
self.speakers = None
if hp.multispeaker:
self.speakers = tf.placeholder(tf.int32, shape=(None, None))
if hp.use_external_durations:
self.durations = tf.placeholder(tf.float32, shape=(None, None, None))
if hp.merlin_label_dir:
self.merlin_label = tf.placeholder(tf.float32, shape=(None, None, hp.merlin_lab_dim))
if 'position_in_phone' in hp.history_type:
self.position_in_phone = tf.placeholder(tf.float32, shape=(None, None, 1))
self.mels = tf.placeholder(tf.float32, shape=(None, None, hp.n_mels))
self.prev_max_attentions = tf.placeholder(tf.int32, shape=(None,))
elif self.mode is 'generate_attention':
self.L = tf.placeholder(tf.int32, shape=(None, None))
self.speakers = None
if hp.multispeaker:
self.speakers = tf.placeholder(tf.int32, shape=(None, None))
if hp.use_external_durations:
self.durations = tf.placeholder(tf.float32, shape=(None, None, None))
if hp.merlin_label_dir:
self.merlin_label = tf.placeholder(tf.float32, shape=(None, None, hp.merlin_lab_dim))
if 'position_in_phone' in hp.history_type:
self.position_in_phone = tf.placeholder(tf.float32, shape=(None, None, 1))
self.mels = tf.placeholder(tf.float32, shape=(None, None, hp.n_mels))
def build_training_scheme(self):
'''
hp.update_weights: list of strings of regular expressions used to match
scope prefixes of variables with tf.get_collection. Only these will be updated
by the graph's train_op: others will be frozen in training. TODO: this comment is now out of place...
'''
hp = self.hp
if hp.decay_lr:
self.lr = learning_rate_decay(hp.lr, self.global_step)
else:
self.lr = hp.lr
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr, beta1=hp.beta1, beta2=hp.beta2, epsilon=hp.epsilon)
tf.summary.scalar("lr", self.lr)
if self.hp.update_weights:
train_variables = filter_variables_for_update(self.hp.update_weights)
print ('Subset of trainable variables chosen for finetuning.') ## TODO: add to logging!
print ('Variables not in this list will remain frozen:')
for variable in train_variables:
print (variable.name)
else:
train_variables = None ## default value -- everything included in compute_gradients
## gradient clipping
self.gvs = self.optimizer.compute_gradients(self.loss, var_list=train_variables) ## var_list: Optional list or tuple of tf.Variable to update to minimize loss
self.clipped = []
for grad, var in self.gvs:
grad = tf.clip_by_value(grad, -1., 1.)
self.clipped.append((grad, var))
self.train_op = self.optimizer.apply_gradients(self.clipped, global_step=self.global_step)
# Summary
self.merged = tf.summary.merge_all()
class SSRNGraph(Graph):
def get_batchsize(self):
return self.hp.batchsize['ssrn'] ## TODO: naming?
def build_model(self):
self.load_data_in_memory(model='ssrn')
self.add_data(reuse=self.reuse, model='ssrn')
with tf.variable_scope("SSRN"):
## OSW: use 'mels' for input both in training and synthesis -- can be either variable or placeholder
self.Z_logits, self.Z = SSRN(self.hp, self.mels, training=self.training, speaker_codes=self.speakers, reuse=self.reuse)
def build_loss(self):
## L2 loss (new)
self.loss_l2 = tf.reduce_mean(tf.squared_difference(self.Z, self.mags))
# mag L1 loss
self.loss_mags = tf.reduce_mean(tf.abs(self.Z - self.mags))
# mag binary divergence loss
self.loss_bd2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.Z_logits, labels=self.mags))
if not self.hp.squash_output_ssrn:
self.loss_bd2 = tf.zeros_like(self.loss_bd2)
print("binary divergence loss disabled because squash_output_ssrn==False")
# total loss
try: ## new way to configure loss weights:- TODO: ensure all configs use new pattern, and remove 'except' branch
# total loss, with 2 terms combined with loss weights:
self.loss = (self.hp.loss_weights['ssrn']['L1'] * self.loss_mags) + \
(self.hp.loss_weights['ssrn']['binary_divergence'] * self.loss_bd2) +\
(self.hp.loss_weights['ssrn']['L2'] * self.loss_l2)
print("New loss weight format used!")
except:
self.lw_mag = self.hp.lw_mag
self.lw_bd2 = self.hp.lw_bd2
self.lw_ssrn_l2 = self.hp.lw_ssrn_l2
self.loss = (self.lw_mag * self.loss_mags) + (self.lw_bd2 * self.loss_bd2) + (self.lw_ssrn_l2 * self.loss_l2)
# loss_components attribute is used for reporting to log (osw)
self.loss_components = [self.loss, self.loss_mags, self.loss_bd2, self.loss_l2]
# summary used for reporting to tensorboard (kp)
tf.summary.scalar('train/loss_mags', self.loss_mags)
tf.summary.scalar('train/loss_bd2', self.loss_bd2)
tf.summary.image('train/mag_gt', tf.expand_dims(tf.transpose(self.mags[:1], [0, 2, 1]), -1))
tf.summary.image('train/mag_hat', tf.expand_dims(tf.transpose(self.Z[:1], [0, 2, 1]), -1))
class Text2MelGraph(Graph):
def get_batchsize(self):
return self.hp.batchsize['t2m'] ## TODO: naming?
def build_model(self):
self.load_data_in_memory()
self.add_data(reuse=self.reuse)
with tf.variable_scope("Text2Mel"):
# Get S or decoder inputs. (B, T//r, n_mels). This is audio shifted 1 frame to the right.
self.S = tf.concat((tf.zeros_like(self.mels[:, :1, :]), self.mels[:, :-1, :]), 1)
# Networks
if self.hp.text_encoder_type=='none':
assert self.hp.merlin_label_dir
self.K = self.V = self.merlin_label
elif self.hp.text_encoder_type=='minimal_feedforward':
assert self.hp.merlin_label_dir
#sys.exit('Not implemented: hp.text_encoder_type=="minimal_feedforward"')
self.K = self.V = LinearTransformLabels(self.hp, self.merlin_label, training=self.training, reuse=self.reuse)
else: ## default DCTTS text encoder
# Build a latent representation of expressiveness, if we defined uee in config file (for unsupervised expressiveness embedding)
#try:
if self.hp.uee!=0:
with tf.variable_scope("Audio2Emo"):
self.emos = Audio2Emo(self.hp, self.S, training=self.training, speaker_codes=self.speakers, reuse=self.reuse) # (B, T/r, d=8)
self.emo_mean = tf.reduce_mean(self.emos, 1)
if self.hp.use_vae:
self.emo_mean_sampled, mu, log_var = VAE(
inputs=self.emo_mean,
num_units=self.hp.vae_dim,
scope='vae',
reuse=self.reuse)
#import pdb;pdb.set_trace()
self.mu = mu
self.log_var = log_var
print(self.emo_mean_sampled.get_shape())
self.emo_mean_expanded = tf.expand_dims(self.emo_mean_sampled,axis=1)
print(self.emo_mean_expanded.get_shape())
else:
print(self.emo_mean.get_shape())
self.emo_mean_expanded = tf.expand_dims(self.emo_mean,axis=1)
print(self.emo_mean_expanded.get_shape())
#pdb.set_trace()
else:
print('No unsupervised expressive embedding')
self.emo_mean_expanded=None
#pdb.set_trace()
with tf.variable_scope("TextEnc"):
self.K, self.V = TextEnc(self.hp, self.L, training=self.training, emos=self.emo_mean_expanded, speaker_codes=self.speakers, reuse=self.reuse) # (N, Tx, e)
with tf.variable_scope("AudioEnc"):
if self.hp.history_type in ['fractional_position_in_phone', 'absolute_position_in_phone']:
self.Q = self.position_in_phone
elif self.hp.history_type == 'minimal_history':
sys.exit('Not implemented: hp.history_type=="minimal_history"')
else:
assert self.hp.history_type == 'DCTTS_standard'
self.Q = AudioEnc(self.hp, self.S, training=self.training, speaker_codes=self.speakers, reuse=self.reuse)
with tf.variable_scope("Attention"):
# R: (B, T/r, 2d)
# alignments: (B, N, T/r)
# max_attentions: (B,)
if not self.hp.attention_reparam:
AppropriateAttention=Attention
else:
AppropriateAttention=Attention_reparametrized
if self.hp.use_external_durations:
self.R, self.alignments, self.max_attentions = FixedAttention(self.hp, self.durations, self.Q, self.V)
elif self.mode is 'synthesize':
self.R, self.alignments, self.max_attentions = AppropriateAttention(self.hp, self.Q, self.K, self.V,
monotonic_attention=True,
prev_max_attentions=self.prev_max_attentions)
elif self.mode is 'train':
self.R, self.alignments, self.max_attentions = AppropriateAttention(self.hp, self.Q, self.K, self.V,
monotonic_attention=False,
prev_max_attentions=self.prev_max_attentions)
elif self.mode is 'generate_attention':
self.R, self.alignments, self.max_attentions = AppropriateAttention(self.hp, self.Q, self.K, self.V,
monotonic_attention=False,
prev_max_attentions=None)
with tf.variable_scope("AudioDec"):
self.Y_logits, self.Y = AudioDec(self.hp, self.R, training=self.training, speaker_codes=self.speakers, reuse=self.reuse) # (B, T/r, n_mels)
def build_loss(self):
hp = self.hp
## L2 loss (new)
self.loss_l2 = tf.reduce_mean(tf.squared_difference(self.Y, self.mels))
# mel L1 loss
self.loss_mels = tf.reduce_mean(tf.abs(self.Y - self.mels))
# mel binary divergence loss
self.loss_bd1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.Y_logits, labels=self.mels))
if not hp.squash_output_t2m:
self.loss_bd1 = tf.zeros_like(self.loss_bd1)
print("binary divergence loss disabled because squash_output_t2m==False")
# guided_attention loss
self.A = tf.pad(self.alignments, [(0, 0), (0, hp.max_N), (0, hp.max_T)], mode="CONSTANT", constant_values=-1.)[:, :hp.max_N, :hp.max_T]
if hp.attention_guide_dir:
self.gts = tf.pad(self.gts, [(0, 0), (0, hp.max_N), (0, hp.max_T)], mode="CONSTANT", constant_values=1.0)[:, :hp.max_N, :hp.max_T] ## TODO: check adding penalty here (1.0 is the right thing)
self.attention_masks = tf.to_float(tf.not_equal(self.A, -1))
self.loss_att = tf.reduce_sum(tf.abs(self.A * self.gts) * self.attention_masks) ## (B, Letters, Frames) * (Letters, Frames) -- Broadcasting first adds singleton dimensions to the left until rank is matched.
self.mask_sum = tf.reduce_sum(self.attention_masks)
self.loss_att /= self.mask_sum
# total loss
try: ## new way to configure loss weights:- TODO: ensure all configs use new pattern, and remove 'except' branch
# total loss, with 2 terms combined with loss weights:
self.loss = (hp.loss_weights['t2m']['L1'] * self.loss_mels) + \
(hp.loss_weights['t2m']['binary_divergence'] * self.loss_bd1) +\
(hp.loss_weights['t2m']['attention'] * self.loss_att) +\
(hp.loss_weights['t2m']['L2'] * self.loss_l2)
except:
self.lw_mel = hp.lw_mel
self.lw_bd1 = hp.lw_bd1
self.lw_att = hp.lw_att
self.lw_t2m_l2 = self.hp.lw_t2m_l2
self.loss = (self.lw_mel * self.loss_mels) + (self.lw_bd1 * self.loss_bd1) + (self.lw_att * self.loss_att) + (self.lw_t2m_l2 * self.loss_l2)
#import pdb;pdb.set_trace()
if self.hp.use_vae and self.hp.if_vae_use_loss:
self.ki_loss = -0.5 * tf.reduce_sum(1 + self.log_var - tf.pow(self.mu, 2) - tf.exp(self.log_var))
self.vae_loss_weight = vae_weight(hp, self.global_step)
self.loss += self.ki_loss * self.vae_loss_weight
# loss_components attribute is used for reporting to log (osw)
self.loss_components = [self.loss, self.loss_mels, self.loss_bd1, self.loss_att, self.loss_l2, self.ki_loss]
else:
# loss_components attribute is used for reporting to log (osw)
self.loss_components = [self.loss, self.loss_mels, self.loss_bd1, self.loss_att, self.loss_l2]
# summary used for reporting to tensorboard (kp)
tf.summary.scalar('train/loss_mels', self.loss_mels)
tf.summary.scalar('train/loss_bd1', self.loss_bd1)
tf.summary.scalar('train/loss_att', self.loss_att)
if self.hp.use_vae and self.hp.if_vae_use_loss: tf.summary.scalar('train/ki_loss', self.ki_loss)
tf.summary.image('train/mel_gt', tf.expand_dims(tf.transpose(self.mels[:1], [0, 2, 1]), -1))
tf.summary.image('train/mel_hat', tf.expand_dims(tf.transpose(self.Y[:1], [0, 2, 1]), -1))
class TextEncGraph(Graph): ## partial graph for deployment only
def build_model(self):
self.load_data_in_memory()
self.add_data(reuse=self.reuse)
with tf.variable_scope("Text2Mel"):
# Get S or decoder inputs. (B, T//r, n_mels)
self.S = tf.concat((tf.zeros_like(self.mels[:, :1, :]), self.mels[:, :-1, :]), 1)
# Networks
with tf.variable_scope("TextEnc"):
self.K, self.V = TextEnc(self.hp, self.L, training=self.training, speaker_codes=self.speakers, reuse=self.reuse) # (N, Tx, e)
class BabblerGraph(Graph):
'''
A model which simply predicts the next audio step given an audio history. Can be used
by itself to babble at synthesis time, given some initial seed (e.g. some frames of
silence, or the beginning of a sentence to be completed). Alternatively, its weights can
be used to initialise the corresponding weights of a text2mel model. As in the paper
"Semi-Supervised Training for Improving Data Efficiency in End-to-End Speech Synthesis" by
Yu-An Chung et al. (2018: https://arxiv.org/abs/1808.10128), dummy textencoder outputs
consisting of all zeros are supplied in training.
'''
def get_batchsize(self):
return self.hp.batchsize.get('babbler', 32) ## default = 32
def build_model(self):
self.load_data_in_memory()
self.add_data(reuse=self.reuse)
with tf.variable_scope("Text2Mel"): ## keep scope names consistent with full Text2Mel
## to allow parameters to be reused more easily later
# Get S or decoder inputs. (B, T//r, n_mels). This is audio shifted 1 frame to the right.
self.S = tf.concat((tf.zeros_like(self.mels[:, :1, :]), self.mels[:, :-1, :]), 1)
# Build a latent representation of expressiveness, if we defined uee in config file (for unsupervised expressiveness embedding)
if self.hp.uee!=0:
with tf.variable_scope("Audio2Emo"):
with tf.variable_scope("AudioEnc"):
self.emos = Audio2Emo(self.hp, self.S, training=self.training, speaker_codes=self.speakers, reuse=self.reuse) # (B, T/r, d=8)
self.emo_mean = tf.reduce_mean(self.emos, 1)
print(self.emo_mean.get_shape())
self.emo_mean = tf.expand_dims(self.emo_mean,axis=1)
print(self.emo_mean.get_shape())
#pdb.set_trace()
else:
print('No unsupervised expressive embedding')
self.emo_mean=None
#pdb.set_trace()
## Babbler has no TextEnc
with tf.variable_scope("AudioEnc"):
self.Q = AudioEnc(self.hp, self.S, training=self.training, reuse=self.reuse)
with tf.variable_scope("Attention"):
## Babbler has no real attention. Dummy (all 0) text encoder outputs are supplied instead.
# R: concat Q with zero vector (dummy text encoder outputs)
dummy_R_prime = tf.zeros_like(self.Q) ## R_prime shares shape of audio encoder output
self.R = tf.concat((dummy_R_prime, self.Q), -1)
with tf.variable_scope("AudioDec"):
self.Y_logits, self.Y = AudioDec(self.hp, self.R, emos=self.emo_mean, training=self.training, speaker_codes=self.speakers, reuse=self.reuse) # (B, T/r, n_mels)
def build_loss(self):
hp = self.hp
# mel L1 loss
self.loss_mels = tf.reduce_mean(tf.abs(self.Y - self.mels))
# mel binary divergence loss
self.loss_bd = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.Y_logits, labels=self.mels))
# total loss, with 2 terms combined with loss weights:
self.loss = (hp.lw_mel * self.loss_mels) + \
(hp.lw_bd1 * self.loss_bd)
# loss_components attribute is used for reporting to log (osw)
self.loss_components = [self.loss, self.loss_mels, self.loss_bd]
# summary used for reporting to tensorboard (kp)
tf.summary.scalar('train/loss_mels', self.loss_mels)
tf.summary.scalar('train/loss_bd', self.loss_bd)
tf.summary.image('train/mel_gt', tf.expand_dims(tf.transpose(self.mels[:1], [0, 2, 1]), -1))
tf.summary.image('train/mel_hat', tf.expand_dims(tf.transpose(self.Y[:1], [0, 2, 1]), -1))
class Graph_style_unsupervised(Graph):
def get_batchsize(self):
return self.hp.batchsize['t2m'] ## TODO: naming?
def build_model(self):
self.load_data_in_memory()
self.add_data(reuse=self.reuse)
# Get S or decoder inputs. (B, T//r, n_mels). This is audio shifted 1 frame to the right.
self.S = tf.concat((tf.zeros_like(self.mels[:, :1, :]), self.mels[:, :-1, :]), 1)
# Build a latent representation of expressiveness, if we defined uee in config file (for unsupervised expressiveness embedding)
try:
if self.hp.uee!=0:
with tf.variable_scope("Audio2Emo"):
with tf.variable_scope("AudioEnc"):
self.emos = Audio2Emo(self.hp, self.S, training=self.training, speaker_codes=self.speakers, reuse=self.reuse) # (B, T/r, d=8)
self.emo_mean = tf.reduce_mean(self.emos, 1)
print(self.emo_mean.get_shape())
self.emo_mean = tf.expand_dims(self.emo_mean,axis=1)
print(self.emo_mean.get_shape())
#pdb.set_trace()
except:
print('No unsupervised expressive embedding')
self.emo_mean=None
#pdb.set_trace()
with tf.variable_scope("Text2Mel"):
# Networks
if self.hp.text_encoder_type=='none':
assert self.hp.merlin_label_dir
self.K = self.V = self.merlin_label
elif self.hp.text_encoder_type=='minimal_feedforward':
assert self.hp.merlin_label_dir
#sys.exit('Not implemented: hp.text_encoder_type=="minimal_feedforward"')
self.K = self.V = LinearTransformLabels(self.hp, self.merlin_label, training=self.training, reuse=self.reuse)
else: ## default DCTTS text encoder
with tf.variable_scope("TextEnc_emotional"):
self.K, self.V = TextEnc(self.hp, self.L, training=self.training, emos=self.emo_mean, speaker_codes=self.speakers, reuse=self.reuse) # (N, Tx, e)
with tf.variable_scope("AudioEnc"):
if self.hp.history_type in ['fractional_position_in_phone', 'absolute_position_in_phone']:
self.Q = self.position_in_phone
elif self.hp.history_type == 'minimal_history':
sys.exit('Not implemented: hp.history_type=="minimal_history"')
else:
assert self.hp.history_type == 'DCTTS_standard'
self.Q = AudioEnc(self.hp, self.S, training=self.training, speaker_codes=self.speakers, reuse=self.reuse)
with tf.variable_scope("Attention"):
# R: (B, T/r, 2d)
# alignments: (B, N, T/r)
# max_attentions: (B,)
if self.hp.use_external_durations:
self.R, self.alignments, self.max_attentions = FixedAttention(self.hp, self.durations, self.Q, self.V)
elif self.mode is 'synthesize':
self.R, self.alignments, self.max_attentions = Attention(self.hp, self.Q, self.K, self.V,
monotonic_attention=True,
prev_max_attentions=self.prev_max_attentions)
elif self.mode is 'train':
self.R, self.alignments, self.max_attentions = Attention(self.hp, self.Q, self.K, self.V,
monotonic_attention=False,
prev_max_attentions=self.prev_max_attentions)
elif self.mode is 'generate_attention':
self.R, self.alignments, self.max_attentions = Attention(self.hp, self.Q, self.K, self.V,
monotonic_attention=False,
prev_max_attentions=None)
with tf.variable_scope("AudioDec"):
self.Y_logits, self.Y = AudioDec(self.hp, self.R, training=self.training, speaker_codes=self.speakers, reuse=self.reuse) # (B, T/r, n_mels)
def build_loss(self):
hp = self.hp
## L2 loss (new)
self.loss_l2 = tf.reduce_mean(tf.squared_difference(self.Y, self.mels))
# mel L1 loss
self.loss_mels = tf.reduce_mean(tf.abs(self.Y - self.mels))
# mel binary divergence loss
self.loss_bd1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.Y_logits, labels=self.mels))
if not hp.squash_output_t2m:
self.loss_bd1 = tf.zeros_like(self.loss_bd1)
print("binary divergence loss disabled because squash_output_t2m==False")
# guided_attention loss
self.A = tf.pad(self.alignments, [(0, 0), (0, hp.max_N), (0, hp.max_T)], mode="CONSTANT", constant_values=-1.)[:, :hp.max_N, :hp.max_T]
if hp.attention_guide_dir:
self.gts = tf.pad(self.gts, [(0, 0), (0, hp.max_N), (0, hp.max_T)], mode="CONSTANT", constant_values=1.0)[:, :hp.max_N, :hp.max_T] ## TODO: check adding penalty here (1.0 is the right thing)
self.attention_masks = tf.to_float(tf.not_equal(self.A, -1))
self.loss_att = tf.reduce_sum(tf.abs(self.A * self.gts) * self.attention_masks) ## (B, Letters, Frames) * (Letters, Frames) -- Broadcasting first adds singleton dimensions to the left until rank is matched.
self.mask_sum = tf.reduce_sum(self.attention_masks)
self.loss_att /= self.mask_sum
# total loss
try: ## new way to configure loss weights:- TODO: ensure all configs use new pattern, and remove 'except' branch
# total loss, with 2 terms combined with loss weights:
self.loss = (hp.loss_weights['t2m']['L1'] * self.loss_mels) + \
(hp.loss_weights['t2m']['binary_divergence'] * self.loss_bd1) +\
(hp.loss_weights['t2m']['attention'] * self.loss_att) +\
(hp.loss_weights['t2m']['L2'] * self.loss_l2)
except:
self.lw_mel = hp.lw_mel
self.lw_bd1 = hp.lw_bd1
self.lw_att = hp.lw_att
self.lw_t2m_l2 = self.hp.lw_t2m_l2
self.loss = (self.lw_mel * self.loss_mels) + (self.lw_bd1 * self.loss_bd1) + (self.lw_att * self.loss_att) + (self.lw_t2m_l2 * self.loss_l2)
# loss_components attribute is used for reporting to log (osw)
self.loss_components = [self.loss, self.loss_mels, self.loss_bd1, self.loss_att, self.loss_l2]
# summary used for reporting to tensorboard (kp)
tf.summary.scalar('train/loss_mels', self.loss_mels)
tf.summary.scalar('train/loss_bd1', self.loss_bd1)
tf.summary.scalar('train/loss_att', self.loss_att)
tf.summary.image('train/mel_gt', tf.expand_dims(tf.transpose(self.mels[:1], [0, 2, 1]), -1))
tf.summary.image('train/mel_hat', tf.expand_dims(tf.transpose(self.Y[:1], [0, 2, 1]), -1))
def filter_variables_for_update(update_weights):
to_train = []
for pattern_string in update_weights:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, pattern_string)
for variable in variables:
if variable not in to_train:
to_train.append(variable)
return to_train