forked from ionescu007/SimpleVisor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshvvp.c
303 lines (262 loc) · 7.16 KB
/
shvvp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/*++
Copyright (c) Alex Ionescu. All rights reserved.
Module Name:
shvvp.c
Abstract:
This module implements Virtual Processor (VP) management for the Simple Hyper Visor.
Author:
Alex Ionescu (@aionescu) 16-Mar-2016 - Initial version
Environment:
Kernel mode only, IRQL DISPATCH_LEVEL.
--*/
#include "shv.h"
UINT8
ShvIsOurHypervisorPresent (
VOID
)
{
INT32 cpuInfo[4];
//
// Check if ECX[31h] ("Hypervisor Present Bit") is set in CPUID 1h
//
__cpuid(cpuInfo, 1);
if (cpuInfo[2] & HYPERV_HYPERVISOR_PRESENT_BIT)
{
//
// Next, check if this is a compatible Hypervisor, and if it has the
// SimpleVisor signature
//
__cpuid(cpuInfo, HYPERV_CPUID_INTERFACE);
if (cpuInfo[0] == ' vhS')
{
//
// It's us!
//
return TRUE;
}
}
//
// No Hypervisor, or someone else's
//
return FALSE;
}
VOID
ShvCaptureSpecialRegisters (
_In_ PSHV_SPECIAL_REGISTERS SpecialRegisters
)
{
//
// Use compiler intrinsics to get the data we need
//
SpecialRegisters->Cr0 = __readcr0();
SpecialRegisters->Cr3 = __readcr3();
SpecialRegisters->Cr4 = __readcr4();
SpecialRegisters->DebugControl = __readmsr(MSR_DEBUG_CTL);
SpecialRegisters->MsrGsBase = __readmsr(MSR_GS_BASE);
SpecialRegisters->KernelDr7 = __readdr(7);
_sgdt(&SpecialRegisters->Gdtr.Limit);
__sidt(&SpecialRegisters->Idtr.Limit);
//
// Use OS-specific functions to get these two
//
_str(&SpecialRegisters->Tr);
_sldt(&SpecialRegisters->Ldtr);
}
DECLSPEC_NORETURN
VOID
ShvVpRestoreAfterLaunch (
VOID
)
{
PSHV_VP_DATA vpData;
//
// Get the per-processor data. This routine temporarily executes on the
// same stack as the hypervisor (using no real stack space except the home
// registers), so we can retrieve the VP the same way the hypervisor does.
//
vpData = (PSHV_VP_DATA)((uintptr_t)_AddressOfReturnAddress() +
sizeof(CONTEXT) -
KERNEL_STACK_SIZE);
//
// Record that VMX is now enabled by returning back to ShvVpInitialize with
// the Alignment Check (AC) bit set.
//
vpData->ContextFrame.EFlags |= EFLAGS_ALIGN_CHECK;
//
// And finally, restore the context, so that all register and stack
// state is finally restored.
//
ShvOsRestoreContext(&vpData->ContextFrame);
}
INT32
ShvVpInitialize (
_In_ PSHV_VP_DATA Data
)
{
INT32 status;
//
// Prepare any OS-specific CPU data
//
status = ShvOsPrepareProcessor(Data);
if (status != SHV_STATUS_SUCCESS)
{
return status;
}
// Read the special control registers for this processor
// Note: KeSaveStateForHibernate(&Data->HostState) can be used as a Windows
// specific undocumented function that can also get this data.
//
ShvCaptureSpecialRegisters(&Data->SpecialRegisters);
//
// Then, capture the entire register state. We will need this, as once we
// launch the VM, it will begin execution at the defined guest instruction
// pointer, which we set to ShvVpRestoreAfterLaunch, with the registers set
// to whatever value they were deep inside the VMCS/VMX initialization code.
// By using RtlRestoreContext, that function sets the AC flag in EFLAGS and
// returns here with our registers restored.
//
ShvOsCaptureContext(&Data->ContextFrame);
if ((__readeflags() & EFLAGS_ALIGN_CHECK) == 0)
{
//
// If the AC bit is not set in EFLAGS, it means that we have not yet
// launched the VM. Attempt to initialize VMX on this processor.
//
status = ShvVmxLaunchOnVp(Data);
}
//
// If we got here, the hypervisor is running :-)
//
return status;
}
VOID
ShvVpUnloadCallback (
_In_ PSHV_CALLBACK_CONTEXT Context
)
{
INT32 cpuInfo[4];
PSHV_VP_DATA vpData;
UNREFERENCED_PARAMETER(Context);
//
// Send the magic shutdown instruction sequence. It will return in EAX:EBX
// the VP data for the current CPU, which we must free.
//
cpuInfo[0] = cpuInfo[1] = 0;
__cpuidex(cpuInfo, 0x41414141, 0x42424242);
//
// If SimpleVisor is disabled for some reason, CPUID will return the values
// of the highest valid CPUID. We use a magic value to make sure we really
// are loaded and returned something valid.
//
if (cpuInfo[2] == 0x43434343)
{
__analysis_assume((cpuInfo[0] != 0) && (cpuInfo[1] != 0));
vpData = (PSHV_VP_DATA)((UINT64)cpuInfo[0] << 32 | (UINT32)cpuInfo[1]);
ShvOsFreeContiguousAlignedMemory(vpData, sizeof(*vpData));
}
}
PSHV_VP_DATA
ShvVpAllocateData (
_In_ UINT32 CpuCount
)
{
PSHV_VP_DATA data;
//
// Allocate a contiguous chunk of RAM to back this allocation
//
data = ShvOsAllocateContigousAlignedMemory(sizeof(*data) * CpuCount);
if (data != NULL)
{
//
// Zero out the entire data region
//
__stosq((UINT64*)data, 0, (sizeof(*data) / sizeof(UINT64)) * CpuCount);
}
//
// Return what is hopefully a valid pointer, otherwise NULL.
//
return data;
}
VOID
ShvVpFreeData (
_In_ PSHV_VP_DATA Data,
_In_ UINT32 CpuCount
)
{
//
// Free the contiguous chunk of RAM
//
ShvOsFreeContiguousAlignedMemory(Data, sizeof(*Data) * CpuCount);
}
VOID
ShvVpLoadCallback (
_In_ PSHV_CALLBACK_CONTEXT Context
)
{
PSHV_VP_DATA vpData;
INT32 status;
vpData = NULL;
//
// Detect if the hardware appears to support VMX root mode to start.
// No attempts are made to enable this if it is lacking or disabled.
//
if (!ShvVmxProbe())
{
status = SHV_STATUS_NOT_AVAILABLE;
goto Failure;
}
//
// Allocate the per-VP data for this logical processor
//
vpData = ShvVpAllocateData(1);
if (vpData == NULL)
{
status = SHV_STATUS_NO_RESOURCES;
goto Failure;
}
//
// First, capture the value of the PML4 for the SYSTEM process, so that all
// virtual processors, regardless of which process the current LP has
// interrupted, can share the correct kernel address space.
//
vpData->SystemDirectoryTableBase = Context->Cr3;
//
// Initialize the virtual processor
//
status = ShvVpInitialize(vpData);
if (status != SHV_STATUS_SUCCESS)
{
//
// Bail out, free the allocated per-processor data
//
goto Failure;
}
//
// Our hypervisor should now be seen as present on this LP, as the SHV
// correctly handles CPUID ECX features register.
//
if (ShvIsOurHypervisorPresent() == FALSE)
{
//
// Free the per-processor data
//
status = SHV_STATUS_NOT_PRESENT;
goto Failure;
}
//
// This CPU is hyperjacked!
//
_InterlockedIncrement((volatile long*)&Context->InitCount);
return;
Failure:
//
// Return failure
//
if (vpData != NULL)
{
ShvVpFreeData(vpData, 1);
}
Context->FailedCpu = ShvOsGetCurrentProcessorNumber();
Context->FailureStatus = status;
return;
}