-
Notifications
You must be signed in to change notification settings - Fork 0
/
chunks.py
1305 lines (1063 loc) · 46.8 KB
/
chunks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import operator
import warnings
from typing import Union, Tuple, Iterator, Optional, Generic, TypeVar, Callable, Type, Sequence, Set, Any
import numpy as np
from .data_utils import PositionIter
from .faces import ChunkFace
from .index_dict import IndexDict, Index
from reconstruction.mathlib import Vec3i
V = TypeVar('V')
M = TypeVar('M')
ChunkIndex = Index
class ChunkHelper:
class _IndexMeshGrid:
def __getitem__(self, item) -> Iterator[Vec3i]:
assert isinstance(item, slice)
xs, ys, zs = np.mgrid[item, item, item]
return zip(xs.flatten(), ys.flatten(), zs.flatten())
indexGrid = _IndexMeshGrid()
class Chunk(Generic[V]):
__slots__ = ('_index', '_size', '_dtype', '_fill_value', '_is_filled', '_value')
def __init__(self, index: Vec3i, size: int, dtype: Optional[Union[np.dtype, Type[V]]] = None,
fill_value: Optional[V] = None):
self._index: Vec3i = np.asarray(index, dtype=int)
self._size = size
self._dtype = np.dtype(dtype)
self._fill_value = self._dtype.base.type(fill_value) # If this fails, dtype is an unsupported complex type
self._is_filled = True
self._value: Union[V, np.ndarray] = self._fill_value
@property
def index(self) -> Vec3i:
return self._index
@property
def value(self) -> Union[None, V, np.ndarray]:
return self._value
@property
def size(self) -> int:
return self._size
@property
def dtype(self) -> np.dtype:
return self._dtype
def __dtype(self, other: Optional[Union[np.dtype, Type[M]]] = None) -> np.dtype:
return np.dtype(other) if other is not None else self._dtype
@property
def shape(self) -> Tuple[int, int, int]:
cs = self._size
return cs, cs, cs
@property
def array_shape(self) -> Tuple[int, ...]:
cs = self._size
return cs, cs, cs, *self._dtype.shape
@property
def position_low(self) -> Vec3i:
return np.multiply(self._index, self._size)
@property
def position_high(self) -> Vec3i:
return self.position_low + self._size
def is_filled(self) -> bool:
return self._is_filled
def is_filled_with(self, value: V):
return np.all(self._value == value)
def is_array(self) -> bool:
return not self._is_filled
def inner(self, pos: Vec3i) -> np.ndarray:
return np.asarray(pos, dtype=int) % self._size
def get_pos(self, pos: Vec3i) -> V:
return self.to_array()[tuple(self.inner(pos))]
def set_pos(self, pos: Vec3i, value: V):
inner = self.inner(pos)
arr = self.to_array()
arr[tuple(inner)] = value
self.set_array(arr)
def set_or_fill(self, pos: Vec3i, value: V):
if self._is_filled:
self.set_fill(value)
else:
self.set_pos(pos, value)
def set_fill(self, value: V) -> "Chunk[V]":
dtype = self._dtype
if not dtype.subdtype:
value = dtype.type(value)
else:
try:
value = dtype.base.type(value)
except Exception:
pass
self._value = value
self._is_filled = True
return self
def set_array(self, value: np.ndarray) -> "Chunk[V]":
if isinstance(value, np.ndarray):
value = value.astype(self._dtype.base)
else:
value = np.asarray(value, dtype=self._dtype.base)
assert self.array_shape == value.shape, f"{self.array_shape} != {value.shape}"
self._value = value
self._is_filled = False
return self
def to_array(self) -> np.ndarray:
if self._is_filled:
return np.full(self.shape, self._value, dtype=self._dtype)
else:
return self._value
def filter(self, other: "Chunk[bool]", fill_value: Optional[V] = None) -> "Chunk[V]":
other: Chunk[bool] = other.astype(bool)
c = self.copy(empty=True, fill_value=fill_value)
if other._is_filled and other._value:
c.set_fill(self._value)
else:
arr = np.full(self.shape, c._fill_value, dtype=self._dtype)
arr[other._value] = self._value[other._value]
c.set_array(arr)
return c
def items(self, mask: Optional["Chunk[bool]"] = None) -> Iterator[Tuple[Vec3i, V]]:
it = PositionIter(None, None, None, np.zeros(3), self.shape)
if mask is None:
ps = np.asarray(list(it))
elif isinstance(mask, Chunk):
m = mask.to_array()
ps = np.array([p for p in it if m[p]])
else:
raise ValueError(f"invalid mask of type {type(mask)}")
if len(ps) > 0:
cps = ps + self.position_low
if self.is_filled():
yield from ((p, self._value) for p in cps)
else:
yield from zip(cps, self.to_array()[tuple(ps.T)])
def where(self, mask: Optional["Chunk[bool]"] = None) -> np.ndarray:
it = PositionIter(None, None, None, np.zeros(3), self.shape)
if mask is None:
if self.is_filled():
if self._value:
return np.asarray(list(it)) + self.position_low
else:
return np.argwhere(self.to_array().astype(bool)) + self.position_low
elif isinstance(mask, Chunk):
if mask._is_filled and mask._value:
return self.where(mask=None)
else:
m = mask.to_array()
return np.array([p for p in it if m[p]]) + self.position_low
else:
raise ValueError(f"invalid mask of type {type(mask)}")
return np.empty((0, 3), dtype=int)
def __getitem__(self, item):
if isinstance(item, Chunk):
return self.filter(item)
return self.to_array()[item]
def _set_value(self, value: Union[V, np.ndarray, "Chunk"]):
if isinstance(value, Chunk):
self._is_filled = value._is_filled
self._value = value._value
else:
if isinstance(value, np.ndarray) and value.ndim >= 3 and value.shape == self.array_shape:
self.set_fill(value)
else:
self.set_fill(value)
def __setitem__(self, key: Union[np.ndarray, "Chunk"], value: Union[V, np.ndarray, "Chunk"]):
is_value_chunk = isinstance(value, Chunk)
if is_value_chunk:
assert value._size == self._size
if isinstance(key, Chunk):
if key.all():
# Fast set
if is_value_chunk:
self._is_filled = value._is_filled
self._value = value._value
return
key = key.to_array().astype(np.bool8)
arr = self.to_array()
if is_value_chunk: # Masked
arr[key] = value.to_array()[key]
else:
arr[key] = value
self.set_array(arr)
def copy(self, empty=False, dtype=None, fill_value: Optional[V] = None):
dtype = self.__dtype(dtype)
fill_value = self._fill_value if fill_value is None else fill_value
c = Chunk(self._index, self._size, dtype=dtype, fill_value=fill_value)
if not empty:
if self.is_filled():
value = self._value
if dtype.subdtype:
value = np.copy(value)
c.set_fill(value)
else:
c.set_array(self._value.copy())
return c
def split(self, splits: int, chunk_size: Optional[int] = None) -> Iterator["Chunk"]:
assert splits > 0 and self._size % splits == 0
splits = int(splits)
split_size = self._size // splits
# New chunk size
chunk_size = int(chunk_size or self._size)
assert chunk_size > 0
dtype = self._dtype
# Voxel repeats to achieve chunk size
repeats = chunk_size / split_size
assert repeats > 0 and repeats % 1 == 0 # Chunk size must be achieved by duplication of voxels
repeats = int(repeats)
for offset in ChunkHelper.indexGrid[:splits]:
new_index = np.add(self._index * splits, offset)
c = Chunk(new_index, size=chunk_size, dtype=dtype, fill_value=self._fill_value)
if self.is_filled():
c.set_fill(self._value)
else:
u, v, w = np.asarray(offset, dtype=int) * split_size
tmp = self._value[u: u + split_size, v: v + split_size, w: w + split_size]
if repeats == 1:
val = tmp.copy()
else:
val = np.repeat(np.repeat(np.repeat(tmp, repeats, axis=0), repeats, axis=1), repeats, axis=2)
c.set_array(val)
yield c
def convert(self, func: Callable[[V], M], func_vec: Optional[Callable[[np.ndarray], np.ndarray]]) -> "Chunk[M]":
func_vec = func_vec or np.vectorize(func)
c = Chunk(self._index, self._size, fill_value=func(self._fill_value))
if self.is_filled():
c.set_fill(func(self._value))
else:
c.set_array(func_vec(self._value))
return c
def astype(self, dtype: Type[M]) -> "Chunk[M]":
if self._dtype == dtype:
return self
c = Chunk(self._index, self._size, dtype=dtype, fill_value=dtype(self._fill_value))
if self.is_filled():
c.set_fill(dtype(self._value))
else:
c.set_array(self._value.astype(dtype))
return c
def __bool__(self):
raise ValueError(f"The truth value of {__class__} is ambiguous. "
"Use a.any(), or a.all(), or wrap the comparison (0 < a) & (a < 0)")
def cleanup(self):
"""Try to reduce memory footprint"""
if self.is_array():
u = np.unique(self._value)
if len(u) == 1:
self.set_fill(u.item())
return self
def all(self) -> bool:
return np.all(self._value)
def any(self) -> bool:
return np.any(self._value)
def any_fast(self) -> bool:
if self.is_filled():
return bool(self._value)
return True
def padding(self, grid: "ChunkGrid[V]", padding: int, corners=False) -> np.ndarray:
return grid.padding_at(self._index, padding, corners=corners, edges=corners)
def apply(self, func: Callable[[Union[np.ndarray, V]], Union[np.ndarray, M]],
dtype: Optional[Type[M]] = None, inplace=False, ) -> "Chunk[M]":
dtype = self.__dtype(dtype)
# Fill value
fill_value = self._fill_value
try:
fill_value = func(fill_value)
except Exception as e:
handling = np.geterr()['invalid']
if handling == 'raise':
raise e
elif handling == 'ignore':
pass
else:
warnings.warn("Fill value operand", RuntimeWarning, source=e)
# Inplace selection
if inplace:
assert self._dtype == dtype
c = self
c._fill_value = fill_value
else:
c = self.copy(empty=True, dtype=dtype, fill_value=fill_value)
# Func on value
if self._is_filled:
c.set_fill(func(self._value))
else:
c.set_array(func(self._value))
return c
def join(self, rhs, func: Callable[[Union[np.ndarray, V], Union[np.ndarray, V]], Union[np.ndarray, M]],
dtype: Optional[Type[M]] = None, inplace=False, ) -> "Chunk[M]":
dtype = self.__dtype(dtype)
rhs_is_chunk = isinstance(rhs, Chunk)
# Fill value
rhs_fill_value = rhs._fill_value if rhs_is_chunk else rhs
fill_value = self._fill_value
try:
fill_value = func(self._fill_value, rhs_fill_value)
except Exception as e:
handling = np.geterr()['invalid']
if handling == 'raise':
raise e
elif handling == 'ignore':
pass
else:
warnings.warn("Fill value operand", RuntimeWarning, source=e)
# Inplace selection
if inplace:
assert self._dtype == dtype
c = self
c._fill_value = fill_value
else:
c = self.copy(empty=True, dtype=dtype, fill_value=fill_value)
# Func on values
if rhs_is_chunk:
val = func(self._value, rhs._value)
if self._is_filled and rhs._is_filled:
c.set_fill(val)
else:
c.set_array(val)
else:
val = func(self._value, rhs)
if self._is_filled:
c.set_fill(func(self._value, rhs))
else:
c.set_array(func(self._value, rhs))
return c
# Comparison Operator
def __eq__(self, rhs) -> "Chunk[np.bool8]":
return self.join(rhs, func=operator.eq, dtype=np.bool8).cleanup()
def __ne__(self, rhs) -> "Chunk[np.bool8]":
return self.join(rhs, func=operator.ne, dtype=np.bool8).cleanup()
def __lt__(self, rhs) -> "Chunk[np.bool8]":
return self.join(rhs, func=operator.lt, dtype=np.bool8).cleanup()
def __le__(self, rhs) -> "Chunk[np.bool8]":
return self.join(rhs, func=operator.le, dtype=np.bool8).cleanup()
def __gt__(self, rhs) -> "Chunk[np.bool8]":
return self.join(rhs, func=operator.gt, dtype=np.bool8).cleanup()
def __ge__(self, rhs) -> "Chunk[np.bool8]":
return self.join(rhs, func=operator.ge, dtype=np.bool8).cleanup()
eq = __eq__
ne = __ne__
lt = __lt__
le = __le__
gt = __gt__
ge = __ge__
equals = __eq__
# Single Operator
def __abs__(self) -> "Chunk[V]":
return self.apply(func=operator.abs)
def __invert__(self) -> "Chunk[V]":
return self.apply(func=operator.inv)
def __neg__(self) -> "Chunk[V]":
return self.apply(func=operator.neg)
abs = __abs__
invert = __invert__
neg = __neg__
# Logic Operator
def __and__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.and_)
def __or__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.or_)
def __xor__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.xor)
def __iand__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.iand, inplace=True)
def __ior__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.ior, inplace=True)
def __ixor__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.ixor, inplace=True)
# Math Operator
def __add__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.add)
def __sub__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.sub)
def __mul__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.mul)
def __matmul__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.matmul)
def __mod__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.mod)
def __pow__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.pow)
def __floordiv__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.floordiv)
def __iadd__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.iadd, inplace=True)
def __isub__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.isub, inplace=True)
def __imul__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.imul, inplace=True)
def __imatmul__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.imatmul, inplace=True)
def __imod__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.imod, inplace=True)
def __ifloordiv__(self, rhs) -> "Chunk[V]":
return self.join(rhs, func=operator.ifloordiv, inplace=True)
# TrueDiv Operator
def __truediv__(self, rhs) -> "Chunk[float]":
return self.join(rhs, func=operator.truediv, dtype=np.float)
def __itruediv__(self, rhs) -> "Chunk[float]":
return self.join(rhs, func=operator.itruediv, dtype=np.float, inplace=True)
# Reflected Operators
__radd__ = __add__
__rsub__ = __sub__
__rmul__ = __mul__
__rmatmul__ = __matmul__
__rtruediv__ = __truediv__
__rfloordiv__ = __floordiv__
__rmod__ = __mod__
__rpow__ = __pow__
__rand__ = __and__
__rxor__ = __xor__
__ror__ = __or__
def sum(self, dtype: Optional[Type[M]] = None) -> M:
if self._is_filled:
val = self._value * self._size ** 3
return val if dtype is None else dtype(val)
else:
return np.sum(self._value, dtype=dtype)
@classmethod
def _stack(cls, chunks: Sequence["Chunk[V]"], dtype: np.dtype, fill_value=None) -> "Chunk[np.ndarray]":
assert dtype.shape
index = chunks[0]._index
size = chunks[0]._size
new_chunk = Chunk(index, size, dtype, fill_value)
if all(c._is_filled for c in chunks):
new_chunk.set_fill(np.array([c.value for c in chunks], dtype=dtype.base))
else:
arr = np.array([c.to_array() for c in chunks], dtype=dtype.base).transpose((1, 2, 3, 0))
new_chunk.set_array(arr)
return new_chunk
def unique(self) -> np.ndarray:
if self._is_filled:
return np.asanyarray([self._value])
else:
return np.unique(self._value)
class ChunkGrid(Generic[V]):
__slots__ = ('_chunk_size', '_dtype', '_fill_value', 'chunks')
def __init__(self, chunk_size: int, dtype: Optional[Union[np.dtype, Type[V]]] = None, fill_value: Optional = None):
assert chunk_size > 0
self._chunk_size = chunk_size
self._dtype = np.dtype(dtype)
self._fill_value = self._dtype.base.type(fill_value) # If this fails, dtype is an unsupported complex type
self.chunks: IndexDict[Chunk[V]] = IndexDict()
@property
def dtype(self) -> np.dtype:
return self._dtype
def __dtype(self, other: Optional[Union[np.dtype, Type[M]]] = None) -> np.dtype:
return np.dtype(other) if other is not None else self._dtype
@property
def chunk_size(self) -> int:
return self._chunk_size
@property
def chunk_shape(self) -> Tuple[int, int, int]:
s = self._chunk_size
return s, s, s
@property
def fill_value(self) -> V:
return self._fill_value
@fill_value.setter
def fill_value(self, value: V):
self._fill_value = value
for c in self.chunks:
c._fill_value = value
def size(self) -> Vec3i:
return self.chunks.size() * self._chunk_size
def astype(self, dtype: Type[M]) -> "ChunkGrid[M]":
if self._dtype == dtype:
return self
new_grid: ChunkGrid[M] = ChunkGrid(self._chunk_size, dtype, fill_value=dtype(self._fill_value))
# Method cache (prevent lookup in loop)
__new_grid_chunks_insert = new_grid.chunks.insert
for src in self.chunks.values():
__new_grid_chunks_insert(src.index, src.astype(dtype))
return new_grid
def convert(self, func: Callable[[V], M]) -> "ChunkGrid[M]":
func_vec = np.vectorize(func)
new_grid: ChunkGrid[M] = ChunkGrid(self._chunk_size, fill_value=func(self._fill_value))
# Method cache (prevent lookup in loop)
__new_grid_chunks_insert = new_grid.chunks.insert
for src in self.chunks:
__new_grid_chunks_insert(src.index, src.convert(func, func_vec))
return new_grid
def copy(self, empty=False, dtype: Optional[Union[np.dtype, Type[M]]] = None,
fill_value: Optional[M] = None) -> "ChunkGrid[M]":
# Get type
dtype = self.__dtype(dtype)
# Get fill value
fill_value = self._fill_value if fill_value is None else fill_value
try:
fill_value = dtype.base.type(fill_value)
except Exception:
pass
# Create new grid
new_grid = ChunkGrid(self._chunk_size, dtype, fill_value)
# Fill if wanted
if not empty:
# Method cache (prevent lookup in loop)
__new_grid_chunks_insert = new_grid.chunks.insert
for src in self.chunks.values():
__new_grid_chunks_insert(src.index, src.copy(dtype=dtype, fill_value=fill_value))
return new_grid
def split(self, splits: int, chunk_size: Optional[int] = None) -> "ChunkGrid[V]":
assert splits > 0 and self._chunk_size % splits == 0
chunk_size = chunk_size or self._chunk_size
new_grid: ChunkGrid[V] = ChunkGrid(chunk_size, self._dtype, self._fill_value)
# Method cache (prevent lookup in loop)
__new_grid_chunks_insert = new_grid.chunks.insert
for c in self.chunks.values():
for c_new in c.split(splits, chunk_size):
__new_grid_chunks_insert(c_new.index, c_new)
return new_grid
def _new_chunk_factory(self, index: Index) -> Chunk[V]:
return Chunk(index, self._chunk_size, self._dtype, self._fill_value)
def chunk_index(self, pos: Vec3i) -> Vec3i:
res = np.asarray(pos, dtype=int) // self._chunk_size
assert res.shape == (3,)
return res
def chunk_at_pos(self, pos: Vec3i) -> Optional[Chunk[V]]:
return self.chunks.get(self.chunk_index(pos))
def ensure_chunk_at_index(self, index: ChunkIndex, *, insert=True) -> Chunk[V]:
return self.chunks.create_if_absent(index, self._new_chunk_factory, insert=insert)
def ensure_chunk_at_pos(self, pos: Vec3i, insert=True) -> Chunk[V]:
return self.ensure_chunk_at_index(self.chunk_index(pos), insert=insert)
def empty_mask(self, default=False) -> np.ndarray:
return np.full(self.chunk_shape, default, dtype=np.bool)
@classmethod
def iter_neighbors_indices(cls, index: ChunkIndex) -> Iterator[Tuple[ChunkFace, Vec3i]]:
yield from ((f, np.add(index, f.direction())) for f in ChunkFace)
def iter_neighbors(self, index: ChunkIndex, flatten=False) -> Iterator[Tuple[ChunkFace, Optional["Chunk"]]]:
if flatten:
yield from ((f, c) for f, c in self.iter_neighbors(index, False) if c is not None)
else:
yield from ((f, self.chunks.get(i, None)) for f, i in self.iter_neighbors_indices(index))
def __bool__(self):
raise ValueError(f"The truth value of {__class__} is ambiguous. "
"Use a.any(), or a.all(), or wrap the comparison (0 < a) & (a < 0)")
def all(self):
"""True if all chunks contain only True values"""
return all(c.all() for c in self.chunks.values())
def any(self):
"""True if any chunk contains any True value"""
return any(c.any() for c in self.chunks.values())
def to_dense(self, x: Union[int, slice, None] = None, y: Union[int, slice, None] = None,
z: Union[int, slice, None] = None, return_offset=False) -> Union[np.ndarray, Tuple[np.ndarray, Vec3i]]:
"""Convert the grid to a dense numpy array"""
if len(self.chunks) == 0:
if return_offset:
return np.empty((0, 0, 0)), np.zeros(3)
else:
return np.empty((0, 0, 0))
# Variable cache
cs = self._chunk_size
index_min, index_max = self.chunks.minmax(True)
pos_min = index_min * cs
pos_max = (index_max + 1) * cs
voxel_it = PositionIter(x, y, z, low=pos_min, high=pos_max, clip=False)
chunk_it = voxel_it // cs
chunk_min = np.asarray(chunk_it.start)
chunk_max = np.asarray(chunk_it.stop)
chunk_len = chunk_max - chunk_min
res = np.full(tuple(chunk_len * cs), self.fill_value, dtype=self.dtype)
# Method cache (prevent lookup in loop)
__self_chunks_get = self.chunks.get
__chunk_to_array = Chunk.to_array
for index in chunk_it:
c = __self_chunks_get(index, None)
if c is not None:
u, v, w = (index - chunk_min) * cs
res[u:u + cs, v:v + cs, w:w + cs] = __chunk_to_array(c)
start = voxel_it.start - chunk_min * cs
stop = voxel_it.stop - chunk_min * cs
step = voxel_it.step
if return_offset:
return (
res[start[0]:stop[0]:step[0], start[1]:stop[1]:step[1], start[2]:stop[2]:step[2]],
chunk_min * cs
)
else:
return res[start[0]:stop[0]:step[0], start[1]:stop[1]:step[1], start[2]:stop[2]:step[2]]
def items(self, mask: Optional["ChunkGrid[bool]"] = None) -> Iterator[Tuple[Vec3i, V]]:
# Method cache (prevent lookup in loop)
__chunk_items = Chunk.items
if mask is None:
for i, c in self.chunks.items():
yield from __chunk_items(c)
else:
# Method cache (prevent lookup in loop)
__chunk_any_fast = Chunk.any_fast
__mask_ensure_chunk_at_index = mask.ensure_chunk_at_index
for i, c in self.chunks.items():
m = __mask_ensure_chunk_at_index(i, insert=False)
if __chunk_any_fast(m):
yield from __chunk_items(c, mask=m)
def where(self, mask: Optional["ChunkGrid[bool]"] = None) -> Iterator[Vec3i]:
# Method cache (prevent lookup in loop)
__chunk_where = Chunk.where
if mask is None:
for i, c in self.chunks.items():
yield from __chunk_where(c)
else:
# Method cache (prevent lookup in loop)
__chunk_any_fast = Chunk.any_fast
__mask_ensure_chunk_at_index = mask.ensure_chunk_at_index
for i, c in self.chunks.items():
m = __mask_ensure_chunk_at_index(i, insert=False)
if __chunk_any_fast(m):
yield from __chunk_where(c, mask=m)
def filter(self, other: "ChunkGrid[bool]", fill_value: Optional[V] = None) -> "ChunkGrid[V]":
"""Apply a filter mask to this grid and return the masked values"""
result = self.copy(empty=True, fill_value=fill_value)
# Method cache (prevent lookup in loop)
__self_chunks_get = self.chunks.get
__chunk_any = Chunk.any
__result_chunks_insert = result.chunks.insert
for i, o in other.chunks.items():
c = __self_chunks_get(i, None)
if c is not None and __chunk_any(c):
__result_chunks_insert(i, c.filter(o, fill_value=fill_value))
def __getitem__(self, item):
if isinstance(item, slice):
return self.to_dense(item)
elif isinstance(item, tuple) and len(item) <= 3:
return self.to_dense(*item)
elif isinstance(item, ChunkGrid):
return self.filter(item)
elif isinstance(item, np.ndarray):
return self.get_values(item)
else:
raise IndexError("Invalid get")
def get_values(self, pos: Union[Sequence[Vec3i], np.ndarray]) -> np.ndarray:
"""Returns a list of values at the positions"""
# Method cache (prevent lookup in loop)
__np_argwhere = np.argwhere
__self_ensure_chunk_at_index = self.ensure_chunk_at_index
__chunk_to_array = Chunk.to_array
pos = np.asarray(pos, dtype=int)
assert pos.ndim == 2 and pos.shape[1] == 3
csize = self._chunk_size
cind, cinv = np.unique(pos // csize, axis=0, return_inverse=True)
result = np.zeros(len(cinv), dtype=self._dtype)
for n, i in enumerate(cind):
pind = __np_argwhere(cinv == n).flatten()
cpos = pos[pind] % csize
chunk = __self_ensure_chunk_at_index(i, insert=False)
result[pind] = __chunk_to_array(chunk)[tuple(cpos.T)]
return result
def get_value(self, pos: Vec3i) -> V:
index = self.chunk_index(pos)
c: Chunk[V] = self.chunks.get(index, None)
if c is None:
return self._fill_value
else:
return c.get_pos(pos)
def set_value(self, pos: Vec3i, value: V) -> Chunk[V]:
c = self.ensure_chunk_at_pos(pos)
c.set_pos(pos, value)
return c
def set_or_fill(self, pos: Vec3i, value: V) -> Chunk[V]:
c = self.ensure_chunk_at_pos(pos)
c.set_or_fill(pos, value)
return c
def _set_slices(self, value: Union[V, np.ndarray],
x: Union[int, slice, None] = None,
y: Union[int, slice, None] = None,
z: Union[int, slice, None] = None):
# Variable cache
cs = self._chunk_size
it = PositionIter.require_bounded(x, y, z)
if isinstance(value, np.ndarray):
assert value.shape == it.shape
if self._dtype is not None:
value = value.astype(self._dtype)
for i, pos in it.iter_with_indices():
self.set_value(pos, value[i])
else:
for pos in it:
self.set_value(pos, value)
def _set_positions(self, pos: np.ndarray, value: Union[V, Sequence]):
if isinstance(pos, list):
if not pos:
return # No Op
pos = np.asarray(pos, dtype=int)
if len(pos) == 0:
return # No Op
if pos.shape == (3,):
self.set_value(pos, value)
else:
assert pos.ndim == 2 and pos.shape[1] == 3, f"shape={pos.shape}"
if isinstance(value, (list, tuple, np.ndarray)):
assert len(pos) == len(value)
for p, v in zip(pos, value):
self.set_value(p, v)
else:
upos = np.unique(pos, axis=0)
for p in upos:
self.set_value(p, value)
def _set_chunks(self, mask: "ChunkGrid", value: Union[V, np.ndarray, Chunk[V], "ChunkGrid[V]"]):
assert self._chunk_size == mask._chunk_size
# Method cache (prevent lookup in loop)
__grid_ensure_chunk_at_index = ChunkGrid.ensure_chunk_at_index
if isinstance(value, ChunkGrid):
indices = set(mask.chunks.keys())
if mask._fill_value:
indices.update(self.chunks.keys())
indices.update(value.chunks.keys())
for index in indices:
m = mask.ensure_chunk_at_index(index, insert=False)
val = __grid_ensure_chunk_at_index(value, index, insert=False)
__grid_ensure_chunk_at_index(self, index)[m] = val
# Set fill value
if mask._fill_value:
self._fill_value = self._dtype.base.type(value._fill_value)
else:
indices = set(mask.chunks.keys())
if mask._fill_value:
indices.update(self.chunks.keys())
for index in indices:
m = mask.ensure_chunk_at_index(index, insert=False)
__grid_ensure_chunk_at_index(self, index)[m] = value
# Set fill value
if mask._fill_value:
if isinstance(value, Chunk):
self._fill_value = value._fill_value
else:
if isinstance(value, np.ndarray):
assert value.dtype == self._dtype
self._fill_value = value
else:
self._fill_value = self._dtype.base.type(value)
def __setitem__(self, key, value):
if isinstance(key, slice):
self._set_slices(value, key)
elif isinstance(key, tuple) and len(key) <= 3:
self._set_slices(value, *key)
elif isinstance(key, (np.ndarray, list)):
self._set_positions(key, value)
elif isinstance(key, ChunkGrid):
self._set_chunks(key, value)
else:
raise IndexError("Invalid get")
def cleanup(self, remove=False):
for chunk in self.chunks:
chunk.cleanup()
if remove:
for chunk in list(self.chunks):
if chunk.is_filled_with(self._fill_value):
del self.chunks[chunk.index]
return self
def pad_chunks(self, width: int = 1):
visited: Set[ChunkIndex] = set()
for s in range(0, width):
extra: Set[ChunkIndex] = set(tuple(n) for i in self.chunks.keys()
for f, n in self.iter_neighbors_indices(i))
extra = extra.difference(visited)
for e in extra:
self.ensure_chunk_at_index(e)
visited.update(extra)
return self
def iter_hull(self) -> Iterator[Chunk[V]]:
"""Iter some of the outer chunks that represent the hull around all chunks"""
if self.chunks:
it = self.chunks.sliced_iterator()
for x in it.x.range():
for y in it.y.range():
for z in it.z.range():
c = self.chunks.get((x, y, z), None)
if c is not None:
yield c
break
for x in reversed(it.x.range()):
for y in reversed(it.y.range()):
for z in reversed(it.z.range()):
c = self.chunks.get((x, y, z), None)
if c is not None:
yield c
break
def get_neigbors_at(self, index: ChunkIndex, neighbors=True, edges=True, corners=True, insert=False,
ensure=True): # Method cache
__face_direction = ChunkFace.direction
if ensure:
def getter(index):
return self.ensure_chunk_at_index(index, insert=insert)
else:
def getter(index):
return self.chunks.get(index, default=None)
chunks = np.full((3, 3, 3), None, dtype=np.ndarray)
chunks[1, 1, 1] = self
if neighbors:
for face, index in self.iter_neighbors_indices(index):
u, v, w = __face_direction(face) + 1
chunks[u, v, w] = getter(index)
if edges:
# Add edges
for a, b in ChunkFace.edges():
d = __face_direction(a) + __face_direction(b)
u, v, w = d + 1
chunks[u, v, w] = getter(index + d)
if corners:
# Add corners
for a, b, c in ChunkFace.corners():
d = __face_direction(a) + __face_direction(b) + __face_direction(c)
u, v, w = d + 1
chunks[u, v, w] = getter(index + d)
return chunks
def get_block_at(self, index: ChunkIndex, shape: Tuple[int, int, int], *, offset: Optional[Vec3i] = None,
edges=True, corners=True, ensure=True, insert=False):
assert len(shape) == 3
# Method cache
__face_direction = ChunkFace.direction
if ensure:
def getter(index):
return self.ensure_chunk_at_index(index, insert=insert)
else:
def getter(index):
return self.chunks.get(index, default=None)
_shape = np.asarray(shape)
chunks = np.full(shape, None, dtype=object)
offset = _shape // 2 if offset is None else np.asarray(offset, dtype=int)
assert offset.shape == (3,)
# Corner/Edge case handling
low = np.zeros(3, dtype=int)
high = low + _shape - 1
ignore_chunks = (not edges) or (not corners)
for i in np.ndindex(shape):
chunk_pos = np.add(index, i) - offset
if ignore_chunks:
s = np.sum(i == low) + np.sum(i == high)
if not edges and s == 2:
continue
if not corners and s == 3:
continue
chunks[i] = getter(chunk_pos)
return chunks