-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_maker.py
37 lines (30 loc) · 1.14 KB
/
nn_maker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from keras.models import Sequential
from keras.layers import Dense, Embedding
from keras import optimizers
from gym.spaces import Box, Discrete
def make_dnn(env):
adam = optimizers.Adam(learning_rate=0.0003)
input_dim = get_dimension(env.observation_space, False)
output_dim = get_dimension(env.action_space, True)
model = Sequential()
# model.add(Embedding(1000, 64, input_length=10))
model.add(Dense(units=10, activation='relu', input_dim=input_dim))
model.add(Dense(units=10, activation='relu'))
model.add(Dense(units=10, activation='relu'))
model.add(Dense(units=output_dim, activation='linear'))
model.compile(loss='mean_squared_error',
optimizer=adam,
metrics=['mse', 'accuracy'])
return model
def get_dimension(space, action):
if type(space) is Box:
return space.shape[0]
elif type(space) is Discrete:
if len(space.shape) > 0:
raise ValueError(f'unexpected val {len(space.shape)}')
elif action:
return space.n
else:
return 1
else:
raise ValueError(f'Unexpected type {type(space)}')