forked from lirui-cyber/ISSAC_Lid_Asian
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_xsa.py
executable file
·177 lines (157 loc) · 8.03 KB
/
train_xsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from model.model import *
from model.data_load import *
from score import scoring as scoring
import subprocess
import json
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
def validation(valid_txt, valid_feats, model, model_name, device, kaldi, log_dir, num_lang):
valid_set = RawFeatures2(valid_txt, valid_feats)
valid_data = DataLoader(dataset=valid_set,
batch_size=1,
pin_memory=True,
shuffle=False,
collate_fn=collate_fn_atten)
model.eval()
correct = 0
total = 0
scores = 0
with torch.no_grad():
for step, (utt, labels, seq_len) in enumerate(valid_data):
utt = utt.to(device=device, dtype=torch.float)
labels = labels.to(device)
# Forward pass\
outputs = model(utt, seq_len)
predicted = torch.argmax(outputs, -1)
total += labels.size(-1)
correct += (predicted == labels).sum().item()
if step == 0:
scores = outputs
else:
scores = torch.cat((scores, outputs), dim=0)
acc = correct / total
print('Current Acc.: {:.4f} %'.format(100 * acc))
scores = scores.squeeze().cpu().numpy()
trial_txt = log_dir + '/trial_{}.txt'.format(model_name)
score_txt = log_dir + '/score_{}.txt'.format(model_name)
output_txt = log_dir + '/output_{}.txt'.format(model_name)
scoring.get_trials(valid_txt, num_lang, trial_txt)
scoring.get_score(valid_txt, scores, num_lang, score_txt)
eer_txt = trial_txt.replace('trial', 'eer')
subprocess.call(f"bash ./score/computeEER.sh "
f"--write-file {eer_txt} {trial_txt} {score_txt}", shell=True)
cavg = scoring.compute_cavg(trial_txt, score_txt)
print("Cavg:{}".format(cavg))
with open(output_txt, 'w') as f:
f.write("ACC:{} Cavg:{}".format(acc, cavg))
return cavg
def main():
parser = argparse.ArgumentParser(description='paras for making data')
parser.add_argument('--json', type=str, default='xsa_noise_config.json')
args = parser.parse_args()
with open(args.json, 'r') as json_obj:
config_proj= json.load(json_obj)
seed = config_proj["optim_config"]["seed"]
if seed == -1:
pass
else:
setup_seed(seed)
device = torch.device('cuda'.format(config_proj["optim_config"]["device"])
if torch.cuda.is_available() else 'cpu')
feat_dim = config_proj["model_config"]["d_k"]
n_heads = config_proj["model_config"]["n_heads"]
model = X_Transformer_E2E_LID(input_dim=config_proj["model_config"]["feat_dim"],
feat_dim=config_proj["model_config"]["d_k"],
d_k=config_proj["model_config"]["d_k"],
d_v=config_proj["model_config"]["d_k"],
d_ff=config_proj["model_config"]["d_ff"],
n_heads=config_proj["model_config"]["n_heads"],
dropout=0.1,
n_lang=config_proj["model_config"]["n_language"],
max_seq_len=10000)
model.to(device)
exp = config_proj["exp"]
if not os.path.exists(exp):
os.mkdir(exp)
model_name = config_proj["model_name"]
log_dir = config_proj["Input"]["userroot"] + config_proj["Input"]["log"]
kaldi_root = config_proj["kaldi"]
if not os.path.exists(log_dir):
os.mkdir(log_dir)
feat_layer = config_proj["wav2vec_info"]["layer"]
train_txt = config_proj["Input"]["userroot"] + config_proj["Input"]["data"] + config_proj["Input"]["train_set"] + "/text"
train_feats = config_proj["Input"]["userroot"] + config_proj["Input"]["data"] + config_proj["Input"]["train_set"] + "/feats.scp"
train_set = RawFeatures2(train_txt, train_feats)
train_data = DataLoader(dataset=train_set,
batch_size=config_proj["optim_config"]["batch"] ,
pin_memory=True,
num_workers=config_proj["optim_config"]["num_work"],
shuffle=True,
collate_fn=collate_fn_atten)
if config_proj["Input"]["valid_set"] != "none":
valid_txt = config_proj["Input"]["userroot"] + config_proj["Input"]["valid_set"] + "/wav2vec_" + config_proj["wav2vec_info"]["model_name"] + ".txt"
else:
valid_txt = None
# need to change
test_sets = config_proj["Input"]["test_noise_sets"].split()
loss_func_CRE = nn.CrossEntropyLoss().to(device)
total_step = len(train_data)
total_epochs = config_proj["optim_config"]["epochs"]
valid_epochs = config_proj["optim_config"]["valid_epochs"]
optimizer = torch.optim.Adam(model.parameters(), lr=config_proj["optim_config"]["learning_rate"] )
if config_proj["optim_config"]["warmup_step"] == -1:
warmup = total_step*3
else:
warmup = config_proj["optim_config"]["warmup_step"]
warm_up_with_cosine_lr = lambda step: step / warmup \
if step <= warmup \
else 0.5 * (math.cos((step - warmup) / (total_epochs * total_step - warmup) * math.pi) + 1)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warm_up_with_cosine_lr)
for epoch in tqdm(range(total_epochs)):
model.train()
for step, (utt, labels, seq_len) in enumerate(train_data):
utt_ = utt.to(device=device)
atten_mask = get_atten_mask(seq_len, utt_.size(0))
atten_mask = atten_mask.to(device=device)
mean_mask_, weight_mean = mean_mask(seq_len, len(seq_len), dim= feat_dim * n_heads)
std_mask_, weight_unbaised = std_mask(seq_len, len(seq_len), dim= feat_dim * n_heads)
mean_mask_ = mean_mask_.to(device)
weight_mean = weight_mean.to(device)
std_mask_ = std_mask_.to(device=device)
weight_unbaised = weight_unbaised.to(device=device)
labels = labels.to(device=device)
# Forward pass
outputs = model(utt_, seq_len, mean_mask_, weight_mean, std_mask_, weight_unbaised, atten_mask=atten_mask)
loss_lid = loss_func_CRE(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss_lid.backward()
optimizer.step()
scheduler.step()
if step % 200 == 0:
print("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f} ".
format(epoch + 1, total_epochs, step + 1, total_step, loss_lid.item()))
name = config_proj["exp"] + '/xsa_' + str(epoch) + '.ckpt'
torch.save(model.state_dict(), name)
# print(get_lr(optimizer))
if epoch >= total_epochs - valid_epochs - 1:
# if epoch >= total_epochs - valid_epochs -1 or epoch == 10:
if valid_txt is not None:
valid_feats = config_proj["Input"]["userroot"] + config_proj["Input"]["valid_set"] + "/wav2vec_" + config_proj["wav2vec_info"]["model_name"] + "_" + str(feat_layer) + "_layer/feats.scp"
validation(valid_txt, valid_feats, model, model_name, device, kaldi=kaldi_root, log_dir=log_dir,
num_lang=config_proj["model_config"]["n_language"])
for test in test_sets:
test_txt = config_proj["Input"]["userroot"] + config_proj["Input"]["data"] + test + "/text"
test_feats = config_proj["Input"]["userroot"] + config_proj["Input"]["data"] + test + "/feats.scp"
logg_dir = log_dir + "/" + test
if not os.path.exists(logg_dir):
os.mkdir(logg_dir)
if test_txt is not None:
validation(test_txt, test_feats, model, model_name, device, kaldi=kaldi_root, log_dir=logg_dir,
num_lang=config_proj["model_config"]["n_language"])
if __name__ == "__main__":
main()