-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtutorial_AM4.html
83 lines (62 loc) · 3.29 KB
/
tutorial_AM4.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" type="text/css" media="screen" href="ourstylesheet.css">
<link rel="icon" type="image/x-icon" href="wombat-icon-web.ico">
<title>WOMBAT: Workshop organised by Monash Business Analytics Team</title>
</head>
<body>
<!-- HEADER -->
<div id="header_wrap" class="outer">
<header class="inner">
<img src="wombat-icon-web.png" align="right" width="300">
<h1 id="project_title"> Open the World with Open Source</h1>
<h2 id="project_tagline"> <a href="https://numbats.github.io/WOMBAT2024/"> Workshop Organised by the Monash
Business Analytics Team (WOMBAT) </a> </h2>
</header>
</div>
<!-- MAIN CONTENT -->
<div id="main_content_wrap" class="outer">
<section id="main_content" class="inner">
<hr>
<h2> Tutorial AM 4: Oct 22 9:00-12:30 </h2>
<h3> An introduction to extreme value analysis in R </h3> <br>
<em> Presenter: </em> <a href="https://research.monash.edu/en/persons/kate-saunders"> Kate Saunders</a> is a lecturer in the Department of Econometrics and Business Statistics at Monash University. She is also a Chief Investigator with the <a href="https://climateextremes.org.au/">ARC Centre of Excellence in Climate Extremes</a>. Her research focus is on statistical modelling of climate extremes; and understanding how the probability of extreme events might be influenced by natural variability and climate change. Other interests include; statistical post-processing of meteorological forecasts, quality control of meteorological data and how to estimate the risk
posed by compound weather events. Kate's research improves our understanding of the probability of extreme climate/weather events and helps us to make informed decisions about natural disaster risk.
<br>
<br>
<strong> Tutorial details </strong>
<br>
In this tutorial will we will learn the basics of fitting extreme value distributions in R. This will include:
<ul>
<li>How to fit a Generalised Extreme Value distribution
<li>How to fit a Generalised Pareto distribution
<li>Interpretting model diagnostics
<li>How to perform model selection
<li>How to plot return period curves
<li>Tips and tricks for error handling, and
<li>Practical data considerations for fitting these distributions
</ul>
(Time permitting) we will also touch upon how to:
<ul>
<li>Use the χ function to explore dependence relationships, and</li>
<li>How to fit a Bivariate Extreme Value Distribution.</li>
</ul>
<em>Background:</em> Ideally participants should have a working knowledge of R and some experience with <a
href="https://ggplot2.tidyverse.org/">ggplot2</a>. For this tutorial we will be using the R package <a
href="https://www.jstatsoft.org/article/view/v072i08">extRemes</a>.
<br><br>
Tutorial materials can be found <a href="https://github.com/katerobsau/wombats2024tutorial"> here</a>.
<br>
</section>
</div>
<!-- FOOTER -->
<div id="footer_wrap" class="outer">
<footer class="inner">
Copyright ©2015-2024 Monash University</p>
</footer>
</div>
</body>
</html>