forked from lucksd356/DecisionTrees
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdtree.py
357 lines (301 loc) · 13.7 KB
/
dtree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#
# The original implementation was written by Michael Dorner.
# https://github.com/michaeldorner/DecisionTrees
#
#
#
import csv
from collections import defaultdict
import pydotplus
#
# https://github.com/michaeldorner/DecisionTrees
# http://www.math.uah.edu/stat/data/Fisher.csv
class DecisionTree:
"""Binary tree implementation with true and false branch. """
def __init__(self, col=-1, value=None, trueBranch=None, falseBranch=None, results=None, summary=None):
self.col = col
self.value = value
self.trueBranch = trueBranch
self.falseBranch = falseBranch
self.results = results # None for nodes, not None for leaves
self.summary = summary
def divideSet(rows, column, value):
splittingFunction = None
if isinstance(value, int) or isinstance(value, float): # for int and float values
splittingFunction = lambda row : row[column] >= value
else: # for strings
splittingFunction = lambda row : row[column] == value
list1 = [row for row in rows if splittingFunction(row)]
list2 = [row for row in rows if not splittingFunction(row)]
return (list1, list2)
def uniqueCounts(rows):
results = {}
for row in rows:
#response variable is in the last column
r = row[-1]
if r not in results: results[r] = 0
results[r] += 1
return results
def entropy(rows):
from math import log
log2 = lambda x: log(x)/log(2)
results = uniqueCounts(rows)
entr = 0.0
for r in results:
p = float(results[r])/len(rows)
entr -= p*log2(p)
return entr
def gini(rows):
total = len(rows)
counts = uniqueCounts(rows)
imp = 0.0
for k1 in counts:
p1 = float(counts[k1])/total
for k2 in counts:
if k1 == k2: continue
p2 = float(counts[k2])/total
imp += p1*p2
return imp
def variance(rows):
if len(rows) == 0: return 0
data = [float(row[len(row) - 1]) for row in rows]
mean = sum(data) / len(data)
variance = sum([(d-mean)**2 for d in data]) / len(data)
return variance
def growDecisionTreeFrom(rows, evaluationFunction=entropy):
"""Grows and then returns a binary decision tree.
evaluationFunction: entropy or gini"""
if len(rows) == 0: return DecisionTree()
currentScore = evaluationFunction(rows)
bestGain = 0.0
bestAttribute = None
bestSets = None
columnCount = len(rows[0]) - 1 # last column is the result/target column
for col in range(0, columnCount):
columnValues = [row[col] for row in rows]
#unique values
lsUnique = list(set(columnValues))
for value in lsUnique:
(set1, set2) = divideSet(rows, col, value)
# Gain -- Entropy or Gini
p = float(len(set1)) / len(rows)
gain = currentScore - p*evaluationFunction(set1) - (1-p)*evaluationFunction(set2)
if gain>bestGain and len(set1)>0 and len(set2)>0:
bestGain = gain
bestAttribute = (col, value)
bestSets = (set1, set2)
dcY = {'impurity' : '%.3f' % currentScore, 'samples' : '%d' % len(rows)}
if bestGain > 0:
trueBranch = growDecisionTreeFrom(bestSets[0], evaluationFunction)
falseBranch = growDecisionTreeFrom(bestSets[1], evaluationFunction)
return DecisionTree(col=bestAttribute[0], value=bestAttribute[1], trueBranch=trueBranch,
falseBranch=falseBranch, summary=dcY)
else:
return DecisionTree(results=uniqueCounts(rows), summary=dcY)
def prune(tree, minGain, evaluationFunction=entropy, notify=False):
"""Prunes the obtained tree according to the minimal gain (entropy or Gini). """
# recursive call for each branch
if tree.trueBranch.results == None: prune(tree.trueBranch, minGain, evaluationFunction, notify)
if tree.falseBranch.results == None: prune(tree.falseBranch, minGain, evaluationFunction, notify)
# merge leaves (potentionally)
if tree.trueBranch.results != None and tree.falseBranch.results != None:
tb, fb = [], []
for v, c in tree.trueBranch.results.items(): tb += [[v]] * c
for v, c in tree.falseBranch.results.items(): fb += [[v]] * c
p = float(len(tb)) / len(tb + fb)
delta = evaluationFunction(tb+fb) - p*evaluationFunction(tb) - (1-p)*evaluationFunction(fb)
if delta < minGain:
if notify: print('A branch was pruned: gain = %f' % delta)
tree.trueBranch, tree.falseBranch = None, None
tree.results = uniqueCounts(tb + fb)
def classify(observations, tree, dataMissing=False):
"""Classifies the observationss according to the tree.
dataMissing: true or false if data are missing or not. """
def classifyWithoutMissingData(observations, tree):
if tree.results != None: # leaf
return tree.results
else:
v = observations[tree.col]
branch = None
if isinstance(v, int) or isinstance(v, float):
if v >= tree.value: branch = tree.trueBranch
else: branch = tree.falseBranch
else:
if v == tree.value: branch = tree.trueBranch
else: branch = tree.falseBranch
return classifyWithoutMissingData(observations, branch)
def classifyWithMissingData(observations, tree):
if tree.results != None: # leaf
return tree.results
else:
v = observations[tree.col]
if v == None:
tr = classifyWithMissingData(observations, tree.trueBranch)
fr = classifyWithMissingData(observations, tree.falseBranch)
tcount = sum(tr.values())
fcount = sum(fr.values())
tw = float(tcount)/(tcount + fcount)
fw = float(fcount)/(tcount + fcount)
result = defaultdict(int) # Problem description: http://blog.ludovf.net/python-collections-defaultdict/
for k, v in tr.items(): result[k] += v*tw
for k, v in fr.items(): result[k] += v*fw
return dict(result)
else:
branch = None
if isinstance(v, int) or isinstance(v, float):
if v >= tree.value: branch = tree.trueBranch
else: branch = tree.falseBranch
else:
if v == tree.value: branch = tree.trueBranch
else: branch = tree.falseBranch
return classifyWithMissingData(observations, branch)
# function body
if dataMissing:
return classifyWithMissingData(observations, tree)
else:
return classifyWithoutMissingData(observations, tree)
def plot(decisionTree):
"""Plots the obtained decision tree. """
def toString(decisionTree, indent=''):
if decisionTree.results != None: # leaf node
lsX = [(x, y) for x, y in decisionTree.results.items()]
lsX.sort()
szY = ', '.join(['%s: %s' % (x, y) for x, y in lsX])
return szY
else:
szCol = 'Column %s' % decisionTree.col
if szCol in dcHeadings:
szCol = dcHeadings[szCol]
if isinstance(decisionTree.value, int) or isinstance(decisionTree.value, float):
decision = '%s >= %s?' % (szCol, decisionTree.value)
else:
decision = '%s == %s?' % (szCol, decisionTree.value)
trueBranch = indent + 'yes -> ' + toString(decisionTree.trueBranch, indent + '\t\t')
falseBranch = indent + 'no -> ' + toString(decisionTree.falseBranch, indent + '\t\t')
return (decision + '\n' + trueBranch + '\n' + falseBranch)
print(toString(decisionTree))
def dotgraph(decisionTree):
global dcHeadings
dcNodes = defaultdict(list)
"""Plots the obtained decision tree. """
def toString(iSplit, decisionTree, bBranch, szParent = "null", indent=''):
if decisionTree.results != None: # leaf node
lsX = [(x, y) for x, y in decisionTree.results.items()]
lsX.sort()
szY = ', '.join(['%s: %s' % (x, y) for x, y in lsX])
dcY = {"name": szY, "parent" : szParent}
dcSummary = decisionTree.summary
dcNodes[iSplit].append(['leaf', dcY['name'], szParent, bBranch, dcSummary['impurity'],
dcSummary['samples']])
return dcY
else:
szCol = 'Column %s' % decisionTree.col
if szCol in dcHeadings:
szCol = dcHeadings[szCol]
if isinstance(decisionTree.value, int) or isinstance(decisionTree.value, float):
decision = '%s >= %s' % (szCol, decisionTree.value)
else:
decision = '%s == %s' % (szCol, decisionTree.value)
trueBranch = toString(iSplit+1, decisionTree.trueBranch, True, decision, indent + '\t\t')
falseBranch = toString(iSplit+1, decisionTree.falseBranch, False, decision, indent + '\t\t')
dcSummary = decisionTree.summary
dcNodes[iSplit].append([iSplit+1, decision, szParent, bBranch, dcSummary['impurity'],
dcSummary['samples']])
return
toString(0, decisionTree, None)
lsDot = ['digraph Tree {',
'node [shape=box, style="filled, rounded", color="black", fontname=helvetica] ;',
'edge [fontname=helvetica] ;'
]
i_node = 0
dcParent = {}
for nSplit in range(len(dcNodes)):
lsY = dcNodes[nSplit]
for lsX in lsY:
iSplit, decision, szParent, bBranch, szImpurity, szSamples =lsX
if type(iSplit) == int:
szSplit = '%d-%s' % (iSplit, decision)
dcParent[szSplit] = i_node
lsDot.append('%d [label=<%s<br/>impurity %s<br/>samples %s>, fillcolor="#e5813900"] ;' % (i_node,
decision.replace('>=', '≥').replace('?', ''),
szImpurity,
szSamples))
else:
lsDot.append('%d [label=<impurity %s<br/>samples %s<br/>class %s>, fillcolor="#e5813900"] ;' % (i_node,
szImpurity,
szSamples,
decision))
if szParent != 'null':
if bBranch:
szAngle = '45'
szHeadLabel = 'True'
else:
szAngle = '-45'
szHeadLabel = 'False'
szSplit = '%d-%s' % (nSplit, szParent)
p_node = dcParent[szSplit]
if nSplit == 1:
lsDot.append('%d -> %d [labeldistance=2.5, labelangle=%s, headlabel="%s"] ;' % (p_node,
i_node, szAngle, szHeadLabel))
else:
lsDot.append('%d -> %d ;' % (p_node, i_node))
i_node += 1
lsDot.append('}')
dot_data = '\n'.join(lsDot)
return dot_data
def loadCSV(file):
"""Loads a CSV file and converts all floats and ints into basic datatypes."""
def convertTypes(s):
s = s.strip()
try:
return float(s) if '.' in s else int(s)
except ValueError:
return s
reader = csv.reader(open(file, 'rt'))
dcHeader = {}
if bHeader:
lsHeader = next(reader)
for i, szY in enumerate(lsHeader):
szCol = 'Column %d' % i
dcHeader[szCol] = str(szY)
return dcHeader, [[convertTypes(item) for item in row] for row in reader]
if __name__ == '__main__':
# Select the example you want to classify
example = 2
# All examples do the following steps:
# 1. Load training data
# 2. Let the decision tree grow
# 4. Plot the decision tree
# 5. classify without missing data
# 6. Classifiy with missing data
# (7.) Prune the decision tree according to a minimal gain level
# (8.) Plot the pruned tree
if example == 1:
# the smaller examples
bHeader = False
dcHeadings, trainingData = loadCSV('tbc.csv') # sorry for not translating the TBC and pneumonia symptoms
decisionTree = growDecisionTreeFrom(trainingData)
#decisionTree = growDecisionTreeFrom(trainingData, evaluationFunction=gini) # with gini
result = plot(decisionTree)
#print(result)
dot_data = dotgraph(decisionTree)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_pdf("tbc.pdf")
graph.write_png("tbc.png")
print(classify(['ohne', 'leicht', 'Streifen', 'normal', 'normal'], decisionTree, dataMissing=False))
print(classify([None, 'leicht', None, 'Flocken', 'fiepend'], decisionTree, dataMissing=True)) # no longer unique
# Don' forget if you compare the resulting tree with the tree in my presentation: here it is a binary tree!
else:
bHeader = True
# the bigger example
dcHeadings, trainingData = loadCSV('fishiris.csv') # demo data from matlab
decisionTree = growDecisionTreeFrom(trainingData, evaluationFunction=gini)
prune(decisionTree, 0.8, notify=True) # notify, when a branch is pruned (one time in this example)
result = plot(decisionTree)
#print(result)
dot_data = dotgraph(decisionTree)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_pdf("iris.pdf")
graph.write_png("iris.png")
print(classify([6.0, 2.2, 5.0, 1.5], decisionTree)) # dataMissing=False is the default setting
print(classify([None, None, None, 1.5], decisionTree, dataMissing=True)) # no longer unique