-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathesm-lecture-13.tex
998 lines (636 loc) · 26.7 KB
/
esm-lecture-13.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
% NB: use pdflatex to compile NOT pdftex. Also make sure youngtab is
% there...
% converting eps graphics to pdf with ps2pdf generates way too much
% whitespace in the resulting pdf, so crop with pdfcrop
% cf. http://www.cora.nwra.com/~stockwel/rgspages/pdftips/pdftips.shtml
\documentclass[10pt,aspectratio=169,dvipsnames]{beamer}
\usetheme[color/block=transparent]{metropolis}
\usepackage[absolute,overlay]{textpos}
\usepackage{booktabs}
\usepackage{graphbox} %loads graphicx package
\usepackage{pbox}
\usepackage{adjustbox}
\usepackage[utf8]{inputenc}
\usepackage[scale=2]{ccicons}
\usepackage[official]{eurosym}
\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\usepackage[europeanresistors,americaninductors]{circuitikz}
\setbeamerfont{alerted text}{series=\bfseries}
%\setbeamercolor{alerted text}{fg=BurntOrange}
%\setbeamercolor{alerted text}{fg=mDarkTeal}
%\setbeamercolor{alerted text}{fg=Brown} % Goran
\setbeamercolor{alerted text}{fg=Mahogany} % Goran
\setbeamercolor{background canvas}{bg=white}
\newcommand{\R}{\mathbb{R}}
\def\l{\lambda}
\def\m{\mu}
\def\d{\partial}
\def\cL{\mathcal{L}}
\def\co2{CO${}_2$}
\def\el{${}_{el}$}
\def\th{${}_{th}$}
\def\gas{${}_{gas}$}
\newif\ifgoat
\goattrue %
\newcommand*\rot{\rotatebox{90}}
\usepackage{pifont}
\newcommand*\OK{\ding{51}}
%use this to add space between rows
\newcommand{\ra}[1]{\renewcommand{\arraystretch}{#1}}
% for sources http://tex.stackexchange.com/questions/48473/best-way-to-give-sources-of-images-used-in-a-beamer-presentation
\setbeamercolor{framesource}{fg=gray}
\setbeamerfont{framesource}{size=\tiny}
\newcommand{\source}[1]{\begin{textblock*}{5cm}(10.5cm,8.35cm)
\begin{beamercolorbox}[ht=0.5cm,right]{framesource}
\usebeamerfont{framesource}\usebeamercolor[fg]{framesource} Source: {#1}
\end{beamercolorbox}
\end{textblock*}}
\usepackage{hyperref}
%\usepackage[pdftex]{graphicx}
\graphicspath{{graphics/}}
\DeclareGraphicsExtensions{.pdf,.jpeg,.png,.jpg}
\def\goat#1{{\scriptsize\color{green}{[#1]}}}
\let\olditem\item
\renewcommand{\item}{%
\olditem\vspace{5pt}}
\title{Energy System Modelling\\ Summer Semester 2020, Lecture 13}
%\subtitle{---}
\author{
{\bf Dr. Tom Brown}, \href{mailto:[email protected]}{[email protected]}, \url{https://nworbmot.org/}\\
\emph{Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI)}
}
\date{}
\titlegraphic{
\vspace{0cm}
\hspace{10cm}
\includegraphics[trim=0 0cm 0 0cm,height=1.8cm,clip=true]{kit.png}
\vspace{5.1cm}
{\footnotesize
Unless otherwise stated, graphics and text are Copyright \copyright Tom Brown, 2020.
Graphics and text for which no other attribution are given are licensed under a
\href{https://creativecommons.org/licenses/by/4.0/}{Creative Commons
Attribution 4.0 International Licence}. \ccby}
}
\begin{document}
\maketitle
\begin{frame}
\frametitle{Table of Contents}
\setbeamertemplate{section in toc}[sections numbered]
\tableofcontents[hideallsubsections]
\end{frame}
\section{Workflow management for complex models}
\begin{frame}{Motivation: More detailed data-driven models, more scenarios}
When we upgrade from the 30-node model to 5000+ nodes for a detailed grid model, and calculate 100 scenarios with different settings, \alert{data management becomes important}.
\begin{columns}[T]
\begin{column}{6cm}
% left bottom right top
\includegraphics[trim=0 0.7cm 0 3.5cm,width=6.4cm]{europe_map}
\end{column}
\begin{column}{6cm}
\includegraphics[width=6.5cm]{pypsa-eur-grid.pdf}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Data-Driven Modelling}
Lots of different types of data come together for the modelling...
\includegraphics[width=14cm]{data_driven.png}
\end{frame}
\begin{frame}
\frametitle{Problems}
\begin{itemize}
\item Many different data sources
\item Many data sources need cleaning and processing before they can be used
\item Many intermediate scripts and datasets
\item Many colleagues hack something together in a folder - hard to reproduce later
\item Often dependencies are not clear (both data and software)
\item Data and code change over time
\item Want to run many parameteric scenarios for same model
\end{itemize}
\vspace{.5cm}
\pause
What we need is a \alert{workflow management tool}.
\end{frame}
\begin{frame}
\frametitle{Workflow Management Tool: Snakemake}
``The \href{https://snakemake.readthedocs.io/en/stable/}{Snakemake} workflow management system is a tool to create \alert{reproducible and scalable data analyses}. Workflows are described via a human readable, Python based language. They can be seamlessly scaled to server, cluster, grid and cloud environments, without the need to modify the workflow definition. Finally, Snakemake workflows can entail a description of required software, which will be automatically deployed to any execution environment.''
\vspace{1cm}
See \href{https://slides.com/johanneskoester/snakemake-short}{\bf\color{blue}\underline{Snakemake presentation}}.
\end{frame}
\begin{frame}
\frametitle{Snakemake for PyPSA-Eur: Building Model}
The \href{https://snakemake.readthedocs.io/en/stable/}{\bf\color{blue}\underline{Snakemake}} workflow management system is a tool to create \alert{reproducible and scalable data analyses}. Dependency graph: \alert{nodes} for scripts, \alert{directed edges} map outputs to inputs.
\vspace{.3cm}
\includegraphics[width=14.8cm]{workflow.png}
\end{frame}
\begin{frame}
\frametitle{Snakemake for PyPSA-Eur: Managing Scenarios}
\centering
\includegraphics[width=14cm]{scenarios.png}
\end{frame}
\begin{frame}
\frametitle{PyPSA-Eur}
\begin{columns}[T]
\begin{column}{4cm}
\vspace{1.5cm}
See \href{https://docs.google.com/presentation/d/1mzj4X9uuO58gUvkhVMRCFWOJUWbs6NR9SNZe-RIkkNo/edit?usp=sharing}{\bf\color{blue}\underline{PyPSA-Eur slidedeck}} for breakdown of PyPSA-Eur snakemake rules.
\vspace{.5cm}
Checkout also the \href{https://github.com/PyPSA/pypsa-eur}{\bf\color{blue}\underline{PyPSA-Eur GitHub repository}}.
\end{column}
\begin{column}{8cm}
\vspace{.2cm}
\includegraphics[width=8.5cm]{pypsa-eur-grid}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{PyPSA-Eur-Sec builds on PyPSA-Eur}
\begin{columns}[T]
\begin{column}{7cm}
\vspace{.2cm}
\begin{itemize}
\item \href{https://github.com/PyPSA/pypsa-eur-sec}{\bf\color{blue}\underline{PyPSA-Eur-Sec}} includes PyPSA-Eur as a \alert{snakemake subworkflow}.
\item PyPSA-Eur builds the clustered power grid and renewable generators.
\item Then PyPSA-Eur-Sec adds other sectors.
\end{itemize}
\vspace{.2cm}
\centering
\includegraphics[trim={1.5cm 1.5cm 1.5cm 1.5cm},clip,width=4.5cm]{today.pdf}
\end{column}
\begin{column}{5.5cm}
\vspace{1cm}
\centering
\includegraphics[width=6cm]{20200223_multisector_figure.pdf}
\end{column}
\end{columns}
\end{frame}
\section{Effect of spatial scale on results of energy system optimisations}
\begin{frame}{Motivation: Transmission bottlenecks}
Many of the results we've examined so far have aggregated countries
to a single node. However, there are also transmission network
bottlenecks \alert{within} countries (e.g. North to South Germany).
\centering
\includegraphics[width=8cm]{europe-transmission}
\source{ENTSO-E}
\end{frame}
\begin{frame}{Motivation: Wind and solar resource variation}
There is also considerable variation in wind and solar resources...
\begin{columns}[T]
\begin{column}{5cm}
\includegraphics[trim=0 0cm 0 0cm,width=4.7cm,clip=true]{SolarGIS-Solar-map-Germany-de}
\end{column}
\begin{column}{6cm}
\vspace{.3cm}
\includegraphics[trim=0 0cm 0 0cm,width=6cm,clip=true]{43_Mittlere_Windgeschwindigkeit_100_m_Deutschland}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Spatial resolution}
\begin{columns}
\begin{column}{7cm}
We need spatial resolution to:
\begin{itemize}
\item capture the \alert{geographical variation} of renewables resources and the load
\item capture \alert{spatio-temporal effects} (e.g. size of wind correlations across the continent)
\item represent important \alert{transmission constraints}
\end{itemize}
BUT we do not want to have to model all 5,000 network nodes of the European system.
\end{column}
\begin{column}{6cm}
\centering
% No, we really do not not want to optimise a model of 4653 substation, 5613 AC lines and 26 DC lines of the European HV electricity network.
\includegraphics[width=6.5cm]{pre-2-network-full.pdf}
\source{Own representation of Bart Wiegman's GridKit extract of the
online ENTSO-E map, \url{https://doi.org/10.5281/zenodo.55853}}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Clustering: Many algorithms in the literature}
There are lots of algorithms for clustering networks, particularly in the engineering literature:
\begin{itemize}
\item $k$-means clustering on (electrical) distance
\item $k$-means on load distribution
\item Community clustering (e.g. Louvain)
\item Spectral analysis of Laplacian matrix
\item Clustering of Locational Marginal Prices with nodal pricing (sees congestion and RE generation)
\item PTDF clustering
\item Cluster nodes with correlated RE time series
\end{itemize}
The algorithms all serve different purposes (e.g. reducing part of
the network on the boundary, to focus on another part).
Not always tested on real network data.
\end{frame}
\begin{frame}
\frametitle{$k$-means clustering on load \& conventional generation}
Our \alert{goal}: maintain main transmission corridors of today to
investigate highly renewable scenarios with no grid expansion. Since generation fleet is totally rebuilt, do not want to rely on current generation dispatch (like e.g. LMP algorithm).
Today's grid was laid out to connect big generators and load centres.
\begin{columns}
\begin{column}{5cm}
\vspace{0.5cm}
\alert{Solution}:
Cluster nodes based on spatial distribution using $k$-means, with a weighting to sites with higher average load and conventional generation capacity.
\end{column}
\begin{column}{7cm}
\vspace{.3cm}
\includegraphics[width=6.5cm]{clustering.pdf}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{$k$-means clustering on load \& conventional generation}
Suppose the $N$ nodes $i$ have spatial coordinates $(x_i,y_i)$. The $k$-means algorithm works by partitioning them into $k\leq N$ sets $N_c$ for $c = 1, \dots k$ such that the sum of squared distance to the centroid $(x_c,y_c)$ (mean point inside each set) is minimised:
\begin{equation*}
\min_{\{(x_c,y_c)\}} \sum_{c=1}^k \sum_{i \in N_c} w_i \left|\left| \left(\begin{matrix}
x_c \\
y_c
\end{matrix}\right) - \left(\begin{matrix}
x_i \\
y_i
\end{matrix}\right)\right|\right|^2
\end{equation*}
Each node $i$ is weighted $w_i$ by the average load and the
average conventional generation there.
Use the centroid as the location of the new clustered node.
\end{frame}
\begin{frame}
\frametitle{Reconstitution of network}
Once the partition of nodes is determined:
\begin{itemize}
\item A new node is created to represent each set of clustered nodes
\item Hydro capacities and load is aggregated at the node; VRE (wind and solar) time series are aggregated, weighted by capacity factor; potentials for VRE aggregated
\item Lines between clusters replaced by single line with length 1.25 $\times$ crow-flies-distance, capacity and impedance according to replaced lines
\item $n-1$ blanket safety margin factor grows from 0.3 with $\geq 200$ nodes to 0.5 with 37 nodes (to account for aggregation)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{$k$-means clustering: Networks}
\centering
\includegraphics[width=13cm]{networks-clustered-crop}
% $\vcenter{\hbox{\includegraphics[width=4cm]{pre-2-network-full}}}$
% $\vcenter{\hbox{\includegraphics[width=4cm]{pre-2-network-362-LV-1}}}$
% $\vcenter{\hbox{\includegraphics[width=4cm]{pre-2-network-181-LV-1}}}$ \\
% $\vcenter{\hbox{\includegraphics[width=4cm]{pre-2-network-128-LV-1}}}$
% $\vcenter{\hbox{\includegraphics[width=4cm]{pre-2-network-64-LV-1}}}$
% $\vcenter{\hbox{\includegraphics[width=4cm]{pre-2-network-37-LV-1}}}$
\end{frame}
\begin{frame}
\frametitle{Question of spatial resolution}
How is the overall minimum of the cost objective (building and
running the electricity system) affected by an increase of spatial
resolution in each country?
We expect
\begin{itemize}
\item A better representation of existing internal bottlenecks will prevent the transport of e.g. offshore wind to the South of Germany.
\item Localised areas of e.g. good wind can be better exploited by the optimisation.
\end{itemize}
Which effect will win?
First we only optimize the gas, wind and solar generation
capacities, the long-term and short-term storage capacities and
their economic dispatch including the available hydro facilities
\alert{without grid expansion}.
\end{frame}
\begin{frame}
\frametitle{Nodal energy shares per technology (w/o grid expansion)}
\includegraphics[width=15cm]{legend-flat}
\begin{columns}[T]
\begin{column}{8cm}
\includegraphics[trim=0 0cm 0 2cm,width=8cm]{euro-pie-pre-7-branch_limit-1-37.png}
\end{column}
\begin{column}{8cm}
\raisebox{-6.6cm}{
\includegraphics[trim=0 0cm 0 2cm,width=8cm]{euro-pie-pre-7-branch_limit-1-256.png}
}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Costs: System cost w/o grid expansion}
\begin{columns}[T]
\begin{column}{8.5cm}
\includegraphics[width=9.5cm]{cost_eu_1}
\end{column}
\begin{column}{6cm}
\vspace{2cm}
\begin{itemize}
\item Steady total system cost at \euro~260 billion per year
\item This translates to \euro~82/MWh (compared to today of \euro~50/MWh to \euro~60/MWh)
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Costs: System cost and break-down into technologies {\large (w/o grid expansion)}}
\begin{columns}[T]
\begin{column}{8.5cm}
\includegraphics[width=8.5cm]{cost_eu_breakdown_by_cap-1}
\end{column}
\begin{column}{6cm}
If we break this down into technologies:
\begin{itemize}
\item 37 clusters captures around half of total network volume
\item Redistribution of capacities from offshore wind to solar
\item Increasing solar share is accompanied by an increase of
battery storage
\item Single countries do not stay so stable
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Costs: Focus on Germany (w/o grid expansion)}
\begin{columns}[T]
\begin{column}{8.5cm}
\centering
\includegraphics[width=8.5cm]{cost_de_breakdown-1-0}
%\includegraphics[width=6cm]{pre-2-costs_de_storage}
\end{column}
\begin{column}{6cm}
\begin{itemize}
\item Offshore wind replaced by onshore wind at better sites and solar (plus batteries), since
the represented transmission bottlenecks make it impossible to
transport the wind energy away from the coast
\item the effective onshore wind capacity factors increase from $26\%$ to up to $42\%$
\item Investments stable at 181 clusters and above
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Interaction between network expansion and spatial scale}
6 different scenarios of network expansion by constraining the
overall transmission line volume in relation to today's line volume $\mathrm{CAP}_{\mathrm{trans}}^{\mathrm{today}}$, given length $d_\ell$ and capacity
$F_\ell$ of each line $\ell$:
\begin{align}
F_\ell & \geq F_\ell^{\mathrm{today}} \\
\sum_\ell d_\ell F_\ell & \leq \mathrm{CAP}_{\mathrm{trans}}
\end{align}
where
\begin{equation}
\mathrm{CAP}_{\mathrm{trans}} = x \, \mathrm{CAP}_{\mathrm{trans}}^{\mathrm{today}}
\end{equation}
for $x = 1$ (today's grid) $x = 1.125,1.25,1.5,2$, $x=3$ (optimal for overhead line at high number of cluster).
\end{frame}
\begin{frame}
\frametitle{With expansion}
\includegraphics[width=15cm]{legend-flat}
\begin{columns}[T]
\begin{column}{8cm}
\includegraphics[trim=0 0cm 0 2cm,width=8cm]{euro-pie-pre-7-branch_limit-1-5-256.png}
\end{column}
\begin{column}{8cm}
\raisebox{-6.6cm}{
\includegraphics[trim=0 0cm 0 2cm,width=8cm]{euro-pie-pre-7-branch_limit-3-256.png}
}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Costs: Total system cost}
\centering
\begin{columns}[T]
\begin{column}{8.5cm}
\includegraphics[width=9.5cm]{cost_eu}
\end{column}
\begin{column}{7cm}
\begin{itemize}
\item Steady cost for No Expansion (1)
\item For expansion scenarios, as clusters increase, the better expoitation of good sites decreases costs faster than transmission bottlenecks increase them
\item Decrease in cost is v. non-linear as grid expanded (25\% grid expansion gives 50\% of optimal cost reduction)
\item Only a moderate $20-25\%$ increase in costs from the Optimal Expansion
scenario (3) to the No Expansion scenario (1).
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Costs: Break-down into technologies}
\centering
\includegraphics[width=12cm]{cost_eu_breakdown_by_cap}
\end{frame}
\begin{frame}
\frametitle{Costs: Focus on Germany (CAP = 3)}
\begin{columns}[T]
\begin{column}{8.5cm}
\centering
\includegraphics[width=8.5cm]{cost_de_breakdown-3-0}
%\includegraphics[width=6cm]{pre-2-costs_de_storage}
\end{column}
\begin{column}{6cm}
\begin{itemize}
\item Investment reasonably stable at 128 clusters and above
\item System consistently dominated by wind
\item No solar or battery for any number of clusters
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Behaviour as CAP is changed}
\begin{columns}[T]
\begin{column}{8.5cm}
\centering
\includegraphics[width=8.5cm]{costs_per_cluster_181}
%\includegraphics[width=6cm]{pre-2-costs_de_storage}
\end{column}
\begin{column}{6cm}
\begin{itemize}
%\item %Big reduction in curtailment
\item Same non-linear development with high number of nodes that we saw with one node per country
\item Most of cost reduction happens with small expansion; cost
rather flat once capacity has doubled, reaching minimum (for
overhead lines) at 3 times today's capacities
\item Solar and batteries decrease significantly as grid expanded
\item Reduction in storage losses too
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Locational Marginal Prices CAP=1 versus CAP=3}
\begin{columns}[T]
\begin{column}{8cm}
\hspace{1cm} With today's capacities:
\includegraphics[width=8cm]{lmp-1-256.pdf}
\end{column}
\begin{column}{8cm}
\hspace{1cm}With three times today's grid:
\includegraphics[width=8cm]{lmp-3-256.pdf}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Grid expansion CAP shadow price for 181 nodes as CAP relaxed}
\begin{columns}[T]
\begin{column}{10cm}
\centering
\includegraphics[width=11cm]{shadows-branch_limit}
%\includegraphics[width=6cm]{pre-2-costs_de_storage}
\end{column}
\begin{column}{4cm}
\begin{itemize}
%\item %Big reduction in curtailment
\item With overhead lines the optimal system has around 3 times today's transmission volume
\item With underground cables (5-8 times more expensive) the optimal system has around 1.3 to 1.6 times today's transmission volume
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{CO2 prices versus line cap for 181 clusters}
\begin{columns}[T]
\begin{column}{10cm}
\centering
\includegraphics[width=11cm]{shadows-co2}
%\includegraphics[width=6cm]{pre-2-costs_de_storage}
\end{column}
\begin{column}{4cm}
\begin{itemize}
\vspace{2cm}
%\item %Big reduction in curtailment
\item CO2 price of between 150 and 250 \euro/tCO2 required to reach these solutions, depending on line volume cap
\end{itemize}
\end{column}
\end{columns}
\end{frame}
% \begin{frame}
% \frametitle{Comparison of results: energy}
% \centering
% \includegraphics[width=4.5cm]{pre-2-clusters-yearly_energy-LV-inf}
% \includegraphics[width=4.5cm]{pre-2-clusters-yearly_energy-LV-4}
% \includegraphics[width=4.5cm]{pre-2-clusters-yearly_energy-LV-1}
% \end{frame}
% \section{Conclusions}
\begin{frame}
\frametitle{More Details in Paper}
For more details, see the following paper:
\begin{itemize}
\item J. Hörsch, T. Brown, ``The role of spatial scale in joint optimisations of generation and transmission for European highly renewable scenarios,'' EEM 2017, \href{https://arxiv.org/abs/1705.07617}{\bf\color{blue}\underline{link}}.
\end{itemize}
In an upcoming paper with Martha Frysztacki and the same authors, we disentangle the effects of the network resolution from the renewable resource resolution.
\end{frame}
\begin{frame}
\frametitle{Conclusions}
\begin{itemize}
\item Generation costs always dominate grid costs, but the grid can cause higher generation costs if expansion is restricted
\item Systems with no grid extension beyond today are up to 25\% more expensive, but small grid extensions (e.g. 25\% more capacity than today) can lock in big savings
\item Need at least around 200 clusters for Europe to see grid bottlenecks if no expansion
\item Can get away with $\sim 120$ clusters for Europe if grid expansion is allowed
\item This is \alert{no single solution} for highly renewable systems, but a \alert{family of solutions} with different costs and compromises
\item Much of the stationary storage needs can be eliminated by sector-coupling: DSM with electric vehicles, thermal storage; this makes grid expansion less beneficial
\item Understanding the need for \alert{flexibility at different temporal and spatial scales} is key to mastering the complex interactions in the energy system
\end{itemize}
\end{frame}
\section{Cycle formulations of optimal power flow}
\begin{frame}
\frametitle{Angle-based formulation of linear optimal power flow is slow}
The most common way of implementing optimization models with linear power flow is to use the \alert{angle formulation}.
We start with energy conservation (KCL)
\begin{equation*}
p_i = \sum_{\ell} K_{i\ell}f_\ell
\end{equation*}
This puts $N-1$ constraints on the $L$ flows $f_\ell$ (since $\sum_i K_{i\ell} = 0$). For KVL we add $N$ \alert{auxiliary variables} for the voltage angles $\theta_i$ with $L+1$ additional constraints on $f_\ell$ and $\theta_i$:
\begin{align*}
f_\ell & = \frac{1}{x_\ell}\sum_{i} K_{i\ell} \theta_i \\
\theta_0 & = 0
\end{align*}
Check totals: $N+L$ variables $\theta_i,f_\ell$ with $N-1 + L+1 = L+N$ independent, sparse constraints $\Rightarrow$ $\theta_i,f_\ell$ fully determined by the $p_i$, which is what we want.
But we don't really care about the angles $\theta_i$ and they introduce more variables and constraints.
\alert{Is there a better way?}
\end{frame}
\begin{frame}
\frametitle{Cycle-based ``Kirchhoff'' formulation is faster}
The cycle-based \alert{Kirchhoff formulation} avoids the auxiliary variables $\theta_i$ altogether by implementing the Kirchhoff Voltage Law (KVL) directly on the flows $f_\ell$ themselves.
We start again with our $N-1$ KCL constraints:
\begin{equation*}
p_i = \sum_{\ell} K_{i\ell}f_\ell
\end{equation*}
and add the $L-N+1$ cycle constraints of KVL from Lecture 4:
\begin{equation*}
\sum_\ell C_{\ell c} x_\ell f_\ell = 0
\end{equation*}
Check totals: $L$ variables $f_\ell$ with $N-1 + L-N+1 = L$ independent, sparse constraints $\Rightarrow$ $f_\ell$ fully determined by the $p_i$, which is what we want.
This has fewer variables and fewer constraints than the angle-based formulation, so we can expect it to perform better.
\end{frame}
\begin{frame}
\frametitle{Cycle formulation of linear power flow}
A third \alert{cycle formulation} decomposes the flows in the network into two parts:
\begin{enumerate}
\item A flow on a spanning tree of the network, uniquely determined by nodal $\mathbf{p}$ (ensuring KCL)
\item Cycle flows, which don't affect KCL; their strength is fixed by enforcing KVL
\end{enumerate}
\begin{circuitikz}
\draw
(0,3)
to [short,i^=$f_1$,*-*] (3,3)
to [short,i>=$f_2$,*-*] (3,0)
to [short,i>=$f_3$,*-*] (0,0)
to [short,i>=$f_4$,*-*] (0,3);
\draw (3,3) to [short,i^=$f_5$,*-*] (0,0);
\draw (1.5,-1.2) node{$f_\ell$};
\draw (4,1.5) node{$=$};
\draw (4,-1.2) node{$=$};
\draw[red]
(5,3)
to [short,i^=$t_1$,*-*] (8,3)
to [short,i>=$t_2$,*-*] (8,0)
to [short,i>=$t_3$,*-*] (5,0);
\draw (6.5,-1.2) node{$t_\ell$};
\draw (9,1.5) node{$+$};
\draw (9,-1.2) node{$+$};
\draw[blue]
(10,3)
to [short,i>=$$,*-*] (12.8,3)
to [short,i>=$$,*-*] (10,0.2)
to [short,i>=$c_1$,*-*] (10,3);
\draw[blue]
(13,0)
to [short,i>=$$,*-*] (10.2,0)
to [short,i>=$$,*-*] (13,2.8)
to [short,i>=$c_2$,*-*] (13,0);
\draw (11.5,-1.2) node{$\sum_k C_{\ell,k} c_k$};
\end{circuitikz}
\end{frame}
\begin{frame}
\frametitle{Cycle formulation of linear power flow}
The $N-1$ tree flows $\mathbf{t}$ are determined directly from the
$N$ nodal powers $p_n$ and the network power balance constraint
$\sum_n p_n = 0$.
We solve for the $L-N+1$ cycle flows $c_k$ by enforcing the $L-N+1$ KVL equations:
\begin{equation*}
C^t X \mathbf{f} = C^t X (\mathbf{t} + C \mathbf{c}) = 0
\end{equation*}
The matrix $C$ is the incidence matrix of the \alert{weak dual
graph}, $C^t X C$ is the weighted Laplacian of the dual graph and
the above equation becomes a discrete Poisson equation:
\begin{equation*}
C^t X C \mathbf{c} = - C^t X \mathbf{t}
\end{equation*}
Now we have only $L-N+1$ variables $c_k$ with $L-N+1$ independent, \alert{semi-dense} constraints.
\end{frame}
\begin{frame}
\frametitle{LOPF speedup with cycle flows}
\begin{columns}[T]
\begin{column}{7cm}
\includegraphics[width=7.5cm]{lopf-ne-speedup-per-nodes-mean-with-ci-99-regression}
\end{column}
\begin{column}{6cm}
\vspace{0.5cm}
Using \alert{cycle flows instead of voltage angles} we found for generation expansion optimisation (fixed grid):
\begin{itemize}
\item A speed-up of up to \alert{200 times}
\item Average speed-up of \alert{factor 12}
\item Speed-up is highest for \alert{large networks with lots of renewables}
\end{itemize}
\end{column}
\end{columns}
\vspace{.3cm}
\footnotesize
H.~Ronellenfitsch, D.~Manik, J.~Hörsch, {\bf T.~Brown, D.~Witthaut}, \emph{``Dual theory of transmission line outages,''} 2017, IEEE Transactions on Power Systems, \href{https://arxiv.org/abs/1606.07276}{\bf\color{blue}\underline{link}}.
J.~Hörsch, H.~Ronellenfitsch, {\bf D.~Witthaut, T.~Brown}, \emph{``Linear Optimal Power Flow Using Cycle Flows,''} 2017, Electric Power Systems Research,
\href{https://arxiv.org/abs/1704.01881}{\bf\color{blue}\underline{link}}.
\end{frame}
\end{document}