-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFunctions.py
505 lines (373 loc) · 15 KB
/
Functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
#!/usr/bin/env python
# coding: utf-8
# In[15]:
import os
import numpy as np
import matplotlib.pyplot as plt
import sys
import random
import re
import cv2
import glob
from random import shuffle
from skimage.io import imread
from skimage.transform import resize
from skimage.transform import rescale
from skimage.transform import rotate
from skimage import exposure
import warnings
warnings.filterwarnings("ignore")
from tensorflow.keras.models import Sequential
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import SGD, Adam, RMSprop
from tensorflow.keras.layers import Input, Dense, Flatten, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Activation, BatchNormalization,SpatialDropout2D,Conv2DTranspose,concatenate
from tensorflow.keras.preprocessing.image import ImageDataGenerator, array_to_img
from tensorflow.keras.layers import Conv2D,AveragePooling2D,add, GlobalAveragePooling2D, ReLU
from skimage.io import imshow
# In[2]:
#function that create a list from lines in a txt file
#allows to know which image is in which set
def create_list_from_txt(filename):
FILE = filename
with open(FILE, 'r') as f:
lines = [line.strip('\n') for line in f.readlines()]
list_img = [line for line in lines]
return list_img
# In[3]:
#add the name of image to the name of folder
#create the full name of the image to be loaded
def list_dir(set_list,set_dir):
new_data=[]
for x in set_list:
new = os.path.join(set_dir,x)
new_data.append(new)
return new_data
# In[4]:
#tbl stands for to be loaded
def create_list_to_load( covid):
img_path='/tf/Project'
folder_path='/tf/Project/Data_split'
if covid==True:
set_dir=os.path.join(img_path+'/CT_COVID')
split_dir=os.path.join(folder_path+'/COVID')
else:
set_dir=os.path.join(img_path+'/CT_NonCOVID')
split_dir=os.path.join(folder_path+'/NonCOVID')
list_files=glob.glob(split_dir+'/*.txt')
list_files.sort()
#to ensure the order of sets as test , train and val (alphabetic order)
test_list=create_list_from_txt(list_files[0])
train_list=create_list_from_txt(list_files[1])
val_list=create_list_from_txt(list_files[2])
test_list_tbl=list_dir(test_list,set_dir)
train_list_tbl=list_dir(train_list,set_dir)
val_list_tbl=list_dir(val_list,set_dir)
return test_list_tbl, train_list_tbl, val_list_tbl
# In[5]:
def load_data(data_list,img_w,img_h,img_ch):
tab = np.zeros((len(data_list),img_w,img_h,img_ch),dtype='float32')
for i in range(len(data_list)):
Img = cv2.imread(data_list[i],0)
Img = cv2.resize(Img,(img_w, img_h))
Img = Img.reshape(img_w,img_h)/255
tab[i,:,:,0]=Img
return tab
# In[6]:
def create_list_labels(set_list,covid):
list_labels=[]
for i in range(len(set_list)):
if covid==True:
list_labels.append(1)
else:
list_labels.append(0)
return list_labels
# In[7]:
def concatenate_lists_and_labels(list1,labels1,list2,labels2):
return list1+list2, labels1+labels2
# In[8]:
def shuffle_lists(list_img, list_labels):
index_position = list(zip(list_img, list_labels))
random.shuffle(index_position)
list_img[:],list_labels[:] = zip(*index_position)
return list_img,list_labels
# In[9]:
def precision(y_true,y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (intersection + K.epsilon()) / (K.sum(y_pred_f) + K.epsilon())
def recall(y_true,y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (intersection + K.epsilon()) / (K.sum(y_true_f) + K.epsilon())
# In[10]:
#labels is an array
def augmentation(image_set,labels,dictionary_augmentation,batch_size):
image_datagen = ImageDataGenerator(**dictionary_augmentation)
image_generator = image_datagen.flow(
image_set,
y=labels,
batch_size=batch_size,
shuffle=False,
seed=1)
return image_generator
# In[12]:
def vg_model(img_ch, img_width, img_height,base_dense,dropout=False,dr=0.2,Batch_normalization=False):
if Batch_normalization:
#blue layer
model = Sequential()
model.add(Conv2D(filters=base_dense, input_shape=(img_width, img_height, img_ch),
kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *2, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
#orange layer
model.add(Conv2D(filters= base_dense *2, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *2, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *2, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
#purple layer
model.add(Conv2D(filters= base_dense *4, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *4, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *4, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
#green layer
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
#red layer
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
else:
#blue layer
model = Sequential()
model.add(Conv2D(filters=base_dense, input_shape=(img_width, img_height, img_ch),
kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *2, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
#orange layer
model.add(Conv2D(filters= base_dense *2, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *2, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *2, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
#purple layer
model.add(Conv2D(filters= base_dense *4, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *4, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *4, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
#green layer
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
#red layer
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *8, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
if dropout:
#dense layer
model.add(Flatten())
model.add(Dense(64))
model.add(Dropout(dr))
model.add(Activation('relu'))
model.add(Dense(64))
model.add(Dropout(dr))
model.add(Activation('relu'))
model.add(Dense(64))
model.add(Dropout(dr))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Dropout(dr))
model.add(Activation('sigmoid'))
else:
#dense layer
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.summary()
return model
# In[13]:
def densenet(input_shape, n_classes,f=32,dropout=False,dr=0.2):
def bn_rl_cv(x,f,k=1,s=1):
x=BatchNormalization()(x)
x=ReLU()(x)
x=Conv2D(f,k,strides=s, padding="same")(x)
return x
def dense_block(x,r):
for _ in range(r):
y=bn_rl_cv(x,4*f)
y=bn_rl_cv(x,f,3)
x= concatenate([y,x])
return x
def transition_layer(x):
x=bn_rl_cv(x,K.int_shape(x)[-1]//2)
if dropout:
x = Dropout(dr)(x)
x=AveragePooling2D(2, strides=2, padding="same")(x)
return x
input=Input(input_shape)
x=Conv2D(64,7, strides=2, padding="same")(input)
x=MaxPooling2D(3,strides=2, padding="same")(x)
for r in [6,12,32,32]:
d=dense_block(x,6)
x=transition_layer(d)
x=GlobalAveragePooling2D()(d)
output=Dense(n_classes,activation='sigmoid')(x)
model=Model(input, output)
return model
# In[14]:
def resnet(input_shape, n_classes):
def identity_block(y,f):
x=Conv2D(f,1)(y)
x=BatchNormalization()(x)
x=ReLU()(x)
x=Conv2D(f,3,padding='same')(x)
x=BatchNormalization()(x)
x=ReLU()(x)
x=Conv2D(4*f,1)(x)
x=BatchNormalization()(x)
x=add([x,y])
x=ReLU()(x)
return x
def conv_block(y,f,s):
x=Conv2D(f,1)(y)
x=BatchNormalization()(x)
x=ReLU()(x)
x=Conv2D(f,3,strides=s,padding='same')(x)
x=BatchNormalization()(x)
x=ReLU()(x)
x=Conv2D(4*f,1)(x)
x=BatchNormalization()(x)
y=Conv2D(4*f,1,strides=s)(y)
y=BatchNormalization()(y)
x=add([x,y])
x=ReLU()(x)
return x
def resnet_block(x,f,r,s):
x=conv_block(x,f,s)
for _ in range(r-1):
x=identity_block(x,f)
return x
input=Input(input_shape)
x=Conv2D(64,7,strides=2,padding='same')(input)
x=BatchNormalization()(x)
x=ReLU()(x)
x=MaxPooling2D(3,strides=2, padding='same')(x)
x=resnet_block(x,64,3,1)
x=resnet_block(x,128,4,2)
x=resnet_block(x,256,6,2)
x=resnet_block(x,512,3,2)
x=GlobalAveragePooling2D()(x)
output=Dense(n_classes,activation='sigmoid')(x)
model=Model(input,output)
return model
# In[16]:
def Alex_model(img_ch, img_width, img_height,base_dense=8,dr=0.2):
model = Sequential()
model.add(Conv2D(filters=base_dense, input_shape=(img_width, img_height, img_ch),
kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters= base_dense *2, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters= base_dense *4, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *4, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(filters= base_dense *2, kernel_size=(3,3), strides=(1,1), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(128))
model.add(Dropout(dr))
model.add(Activation('relu'))
model.add(Dense(64))
model.add(Dropout(dr))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Dropout(dr))
model.add(Activation('sigmoid'))
model.summary()
return model
# In[1]:
def loss_curves_plot(model_hist):
get_ipython().run_line_magic('matplotlib', 'inline')
plt.figure(figsize=(4, 4))
plt.title("Learning curve")
plt.plot(model_hist.history["loss"], label="loss")
plt.plot(model_hist.history["val_loss"], label="val_loss")
plt.plot( np.argmin(model_hist.history["val_loss"]),
np.min(model_hist.history["val_loss"]),
marker="x", color="r", label="best model")
plt.xlabel("Epochs")
plt.ylabel("Loss Value")
plt.legend();
def accuracy_curves_plot(model_hist,metrics):
get_ipython().run_line_magic('matplotlib', 'inline')
plt.figure(figsize=(4, 4))
plt.title("Learning curve")
plt.plot(model_hist.history[metrics], label="accuracy")
plt.plot(model_hist.history["val_"+metrics], label="val_accuracy")
plt.plot( np.argmax(model_hist.history["val_"+metrics]),
np.max(model_hist.history["val_"+metrics]),
marker="x", color="r", label="best model")
plt.xlabel("Epochs")
plt.ylabel("Accuracy Value")
plt.legend();
# In[ ]: