Skip to content

oakink/OakInk-Grasp-Generation

Repository files navigation


Logo

Grasp Generation models on OakInk-Shape dataset

Lixin Yang* · Kailin Li* · Xinyu Zhan* · Fei Wu · Anran Xu . Liu Liu · Cewu Lu

CVPR 2022

Paper PDF Project Page youtube views

This repo contains the training and evaluation of three Grasp Generation models on OakInk-Shape dataset.

  • GrabNet : Generating realistic hand mesh grasping unseen 3D objects (ECCV 2020)
  • IntGen -- Intent-based Grasp Generation: grasps that align with the intentions behind the object's use.
  • HoverGen -- Handover Generation: hand poses for handing over objects to a recipient.

Table of content

Installation

Create a conda env from environment.yml:

conda env create -f environment.yml  
conda activate oishape_bm  

Install dependencies:

pip install -r requirements.txt
pip install -r [email protected]

Install OakInk data toolkit (oikit) as package:

pip install git+https://github.com/oakink/OakInk.git

Link the OakInk dataset:

ln -s {path_to}/OakInk ./data

Get the MANO hand model:

cp -r {path_to}/mano_v1_2 ./assets

Download the pretrained model weights from Hugging Face and put the contents in ./checkpoints.

Now this repo is ready to generate grasp, visualize, and train models.
If you also want to evaluate grasp quality, there are several extra packages to build, see docs/eval_tools.md

Grasp one

Using our pre-trained GrabNet model to generate multiple grasps on your own object.

python scripts/grasp_new_obj.py --obj_path $OBJ_PATH --n_grasps 10 

options for grasp_new_obj.py:

  • --obj_path: path to the .obj or .ply file of the object to be grasped.
  • --n_grasps: number of grasps to generate, default 1.
  • --mano_path: path to MANO hand model, default in assets/mano_v1_2.
  • --rescale: whether to rescale the object inside a radius=0.1m sphere, default False.
  • --save: whether to save the generated grasps, default False, saved at demo/grasps/{timestamp}.

to run example, set OBJ_PATH to assets/demo_hand.ply:

Image

Visualization

Visualize the generation model trained on OakInk-Shape train set.
The hand in blue is the result of CoarseNet and the hand in red is the result of RefineNet.

Here we detail several argparse options:

  • --cfg: path to the config file.
  • -b, --batch_size: batch size for inference.
  • -g, --gpu_id: gpu id used for inference.
  • --split: which split to visualize, train, val or test.

GrabNet model on the OakInk-Shape test set:

python scripts/viz_grabnet_gen.py -b 1 -g 0 --split test --cfg config/oishape_bm/test_GrabNet_OIShape.yml 

IntGen model on the OakInk-Shape test set:

# obj category: trigger_sprayer, intent: use. 
python scripts/viz_grabnet_gen.py -b 1 -g 0 --split test --intent use \
     --cfg config/oishape_bm/intent/test_GrabIntentNet_OIShape_trigger.yml 

# obj category: trigger_sprayer, intent: hold.
python scripts/viz_grabnet_gen.py  -b 1 -g 0 --split test --intent hold \
    --cfg config/oishape_bm/intent/test_GrabIntentNet_OIShape_trigger.yml 

HoverGen model on the OakInk-Shape test set:

python scripts/viz_grabnet_gen.py -b 1 -g 0 --split test \
    --cfg config/oishape_bm/handover/test_GrabHandoverNet_OIShape.yml 

Evaluation

Process object meshes

Before evaluating the grasps' quality, we need to first pre-process the object meshes. This involves a three-stage pipeline.

  1. Watertight using ManifoldPlus: make the object mesh watertight.
  2. Voxelization using binvox: convert the object mesh to voxel representation.
  3. Convex Decomposition using V-HACD: produce a convex decomposition of the object meshes.

If you have fully completed the installation, then the corresponding tools should be installed and ready to use. Run the following commands sequentially. Results will be saved at data/OakInkShape_object_process by default.

options:

  • --proc_dir: specify the directory to save the processed object meshes, default data/OakInkShape_object_process.
  • --stage: which stage to run, watertight, voxel or vhacd, default watertight.
  • --n_jobs: number of parallel jobs, default 8.
# 1. watertight, this may take 20 mins when n_jobs=8
python scripts/process_obj_mesh.py --stage watertight

# 2. voxelization, this may take 20 mins when n_jobs=32
# if you are using a remote server, 
# you may need to run the following commands to enable binvox's headless rendering.
# Xvfb :1 -screen 0 1024x768x24 &
# export DISPLAY=:1
python scripts/process_obj_mesh.py --stage voxel

# 3. convex decomposition with VHACD, this may take 5 mins when n_jobs=32
python scripts/process_obj_mesh.py --stage vhacd

Evaluate grasp quality

The evaluation metrics include:

The evaluation process will be separated into two steps: 1) dumping the generation results to disk (dump_grabnet_gen.py), then 2) evaluating the grasp's quality (evaluate_grasps.py).

Dumping stage

# GrabNet model
python scripts/dump_grabnet_gen.py -b 1 -g 0 --split test --exp_id eval_grabnet \
    --cfg config/oishape_bm/test_GrabNet_OIShape.yml 

# HoverGen model
python scripts/dump_grabnet_gen.py -b 1 -g 0 --split test --exp_id eval_hovergen \
    --cfg config/oishape_bm/handover/test_GrabHandoverNet_OIShape.yml

This will create a exp directory at EXP_DIR=exp/{exp_id}_{timestamp}. The dumped generation results will be stored in $EXP_DIR/results. Each grasp is saved in a file titled {obj_id}_{grasp_id}.pkl.

Evaluation stage

Set the --exp_path to $EXP_DIR. If you specify --proc_dir when process object mesh, you need to specify it here as well.

python scripts/evaluate_grasps.py --exp_path $EXP_DIR --n_jobs 8  

The evaluation results will be saved at $EXP_DIR/evaluations:

  • Metric.txt: the mean value of each metric over all grasps.
  • eval_res.pkl: a list that contains a dict of evaluation metrics for each grasp.

Training

We first detail several argparse options

  • -c, --cfg: path to the config file.
  • -g, --gpu_id: gpu id(s) used for training.
  • -w, --num_workers: number of workers for data loading.
  • -b, --batch_size: batch size on each device, if not specified, will use the one in cfg file.
  • -p, --dist_master_port: port for ddp, default 60001. specify different ports for different trainings.
  • --exp_id: experiment id, default if not specified.
  • --log_freq: tensorboard logging frequency, default 10.
  • --snapshot: model saving frequency, default 5.

For details please refer to opt.py. All training exps run on a single TITAN X (Pascal) 12G. Training checkpoints will be saved at exp/{exp_id}_{timestamp}.

GrabNet model on the OakInk-Shape train set:

# GrabNet = CoarseNet + RefineNet.

# train CoarseNet 
python scripts/train_ddp.py -g 0 -w 4 --exp_id cnet_oishape \
    --cfg config/oishape_bm/train_CoarseNet_OIShape.yml

# train RefineNet
python scripts/train_ddp.py -g 0 -w 4 --exp_id rnet_oishape \
    --cfg config/oishape_bm/train_RefineNet_OIShape.yml 

IntGen model on the OakInk-Shape train+val set:

# IntGen = CoarseIntentNet + RefineNet. only CoarseIntentNet is trained.

# train CoarseIntentNet
python scripts/train_ddp.py -g 0 -w 4 --exp_id cintentnet_trigger \
    --cfg config/oishape_bm/intent/train_CoarseIntentNet_OIShape_trigger.yml 

HoverGen model on the OakInk-Shape train+val set:

# HoverGen = CoarseHandoverNet + RefineHandoverNet. 

# train CoarseHandoverNet
python scripts/train_ddp.py -g 0 -w 4 --exp_id chandovernet_oishape \
    --cfg config/oishape_bm/handover/train_CoarseHandoverNet_OIShape.yml 

# train RefineHandoverNet
python scripts/train_ddp.py -g 0 -w 4 --exp_id rhandovernet_oishape \
    --cfg config/oishape_bm/handover/train_RefineHandoverNet_OIShape.yml 

Citation

If you find OakInk-Shape dataset useful for your research, please considering cite us:

@inproceedings{YangCVPR2022OakInk,
  author    = {Yang, Lixin and Li, Kailin and Zhan, Xinyu and Wu, Fei and Xu, Anran and Liu, Liu and Lu, Cewu},
  title     = {{OakInk}: A Large-Scale Knowledge Repository for Understanding Hand-Object Interaction},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2022},
}

Releases

No releases published

Packages

No packages published

Languages