-
Notifications
You must be signed in to change notification settings - Fork 76
/
complex.ml
84 lines (64 loc) · 2.74 KB
/
complex.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# 2 "complex.ml"
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
open! Stdlib
[@@@ocaml.flambda_o3]
(* Complex numbers *)
type t = { re: float; im: float }
let zero = { re = 0.0; im = 0.0 }
let one = { re = 1.0; im = 0.0 }
let i = { re = 0.0; im = 1.0 }
let add x y = { re = x.re +. y.re; im = x.im +. y.im }
let sub x y = { re = x.re -. y.re; im = x.im -. y.im }
let neg x = { re = -. x.re; im = -. x.im }
let conj x = { re = x.re; im = -. x.im }
let mul x y = { re = x.re *. y.re -. x.im *. y.im;
im = x.re *. y.im +. x.im *. y.re }
let div x y =
if abs_float y.re >= abs_float y.im then
let r = y.im /. y.re in
let d = y.re +. r *. y.im in
{ re = (x.re +. r *. x.im) /. d;
im = (x.im -. r *. x.re) /. d }
else
let r = y.re /. y.im in
let d = y.im +. r *. y.re in
{ re = (r *. x.re +. x.im) /. d;
im = (r *. x.im -. x.re) /. d }
let inv x = div one x
let norm2 x = x.re *. x.re +. x.im *. x.im
let norm x = Float.hypot x.re x.im
let arg x = atan2 x.im x.re
let polar n a = { re = cos a *. n; im = sin a *. n }
let sqrt x =
if x.re = 0.0 && x.im = 0.0 then { re = 0.0; im = 0.0 }
else begin
let r = abs_float x.re and i = abs_float x.im in
let w =
if r >= i then begin
let q = i /. r in
sqrt(r) *. sqrt(0.5 *. (1.0 +. sqrt(1.0 +. q *. q)))
end else begin
let q = r /. i in
sqrt(i) *. sqrt(0.5 *. (q +. sqrt(1.0 +. q *. q)))
end in
if x.re >= 0.0
then { re = w; im = 0.5 *. x.im /. w }
else { re = 0.5 *. i /. w; im = if x.im >= 0.0 then w else -. w }
end
let exp x =
let e = exp x.re in { re = e *. cos x.im; im = e *. sin x.im }
let log x = { re = log (norm x); im = atan2 x.im x.re }
let pow x y = exp (mul y (log x))