-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs_model_train.backup
29 lines (24 loc) · 1.77 KB
/
args_model_train.backup
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import argparse
def args_validate():
"""
Retrieves and parses the command line arguments provided by the user when
they run the program from a terminal window.
"""
# python train.py --dir <base directory with images> --arch <model>
# --checkpoint <file name for saving train data> --learning_rate <learning rate value>
# --epochs <epochs number> --batchsize <batch size> --trainsteps <trainsteps> --gpu True
# --dropout <train dropout> --categories <categories file name> --savedir <checkpoint dir>
parser = argparse.ArgumentParser()
parser.add_argument('--dir', type = str, default = 'flowers', help = 'image folder (flowers) ')
parser.add_argument('--arch', type = str, default = 'densenet121', help = 'CNN Model Architecture')
parser.add_argument('--checkpoint', type = str, default = 'checkpoint.pth', help = 'Archive with train data')
parser.add_argument('--learningrate', type = float, default = 0.001, help = 'Learning rate')
parser.add_argument('--hiddenunits', type = int, default = 512, help = 'Hidden units')
parser.add_argument('--epochs', type = int, default = 3, help = 'Train epochs')
parser.add_argument('--batchsize', type = int, default = 64, help = 'Train batch size')
parser.add_argument('--trainsteps', type = int, default = 3, help = 'Train steps')
parser.add_argument('--dropout', type = float, default = 0.5, help = 'Train dropout')
parser.add_argument('--gpu', type = bool, default = True, help = 'Uses gpu for calculation')
parser.add_argument('--categories', type = str, default = 'cat_to_name.json', help = 'Categories to names file')
parser.add_argument('--savedir', type = str, default = 'checkpoints', help = 'Checkpoints save dir')
return parser.parse_args()