-
Notifications
You must be signed in to change notification settings - Fork 2
/
honnet_brain_architecture.yaml
273 lines (273 loc) · 7.54 KB
/
honnet_brain_architecture.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
class_name: Model
config:
input_layers:
- [hero_input, 0, 0]
layers:
- class_name: InputLayer
config:
batch_input_shape: !!python/tuple [null, 520]
input_dtype: float32
name: hero_input
sparse: false
inbound_nodes: []
name: hero_input
- class_name: Reshape
config:
batch_input_shape: !!python/tuple [null, 520]
input_dtype: float32
name: reshape_1
target_shape: !!python/tuple [1, 2, 260]
trainable: true
inbound_nodes:
- - [hero_input, 0, 0]
name: reshape_1
- class_name: Permute
config:
dims: !!python/tuple [2, 3, 1]
name: permute_1
trainable: true
inbound_nodes:
- - [reshape_1, 0, 0]
name: permute_1
- class_name: Convolution2D
config:
W_constraint: null
W_regularizer: null
activation: linear
activity_regularizer: null
b_constraint: null
b_regularizer: null
bias: true
border_mode: valid
dim_ordering: tf
init: glorot_uniform
name: convolution2d_1
nb_col: 260
nb_filter: 135
nb_row: 1
subsample: !!python/tuple [1, 1]
trainable: true
inbound_nodes:
- - [permute_1, 0, 0]
name: convolution2d_1
- class_name: BatchNormalization
config: {axis: -1, beta_regularizer: null, epsilon: 0.001, gamma_regularizer: null,
mode: 0, momentum: 0.99, name: batchnormalization_1, trainable: true}
inbound_nodes:
- - [convolution2d_1, 0, 0]
name: batchnormalization_1
- class_name: Activation
config: {activation: relu, name: activation_1, trainable: true}
inbound_nodes:
- - [batchnormalization_1, 0, 0]
name: activation_1
- class_name: Convolution2D
config:
W_constraint: null
W_regularizer: null
activation: linear
activity_regularizer: null
b_constraint: null
b_regularizer: null
bias: true
border_mode: valid
dim_ordering: tf
init: glorot_uniform
name: convolution2d_2
nb_col: 1
nb_filter: 64
nb_row: 1
subsample: !!python/tuple [1, 1]
trainable: true
inbound_nodes:
- - [activation_1, 0, 0]
name: convolution2d_2
- class_name: BatchNormalization
config: {axis: -1, beta_regularizer: null, epsilon: 0.001, gamma_regularizer: null,
mode: 0, momentum: 0.99, name: batchnormalization_2, trainable: true}
inbound_nodes:
- - [convolution2d_2, 0, 0]
name: batchnormalization_2
- class_name: Activation
config: {activation: relu, name: activation_2, trainable: true}
inbound_nodes:
- - [batchnormalization_2, 0, 0]
name: activation_2
- class_name: Flatten
config: {name: flatten_1, trainable: true}
inbound_nodes:
- - [activation_2, 0, 0]
name: flatten_1
- class_name: Dense
config:
W_constraint: null
W_regularizer: null
activation: linear
activity_regularizer: null
b_constraint: null
b_regularizer: null
batch_input_shape: !!python/tuple [null, 128]
bias: true
init: glorot_uniform
input_dim: !!python/object/apply:numpy.core.multiarray.scalar
- !!python/object/apply:numpy.dtype
args: [i8, 0, 1]
state: !!python/tuple [3, <, null, null, null, -1, -1, 0]
- !!binary |
gAAAAAAAAAA=
input_dtype: float32
name: dense_1
output_dim: 128
trainable: true
inbound_nodes:
- - [flatten_1, 0, 0]
name: dense_1
- class_name: BatchNormalization
config: {axis: -1, beta_regularizer: null, epsilon: 0.001, gamma_regularizer: null,
mode: 0, momentum: 0.99, name: batchnormalization_3, trainable: true}
inbound_nodes:
- - [dense_1, 0, 0]
name: batchnormalization_3
- class_name: Activation
config: {activation: relu, name: activation_3, trainable: true}
inbound_nodes:
- - [batchnormalization_3, 0, 0]
name: activation_3
- class_name: Dropout
config: {name: dropout_1, p: 0.5, trainable: true}
inbound_nodes:
- - [activation_3, 0, 0]
name: dropout_1
- class_name: Dense
config:
W_constraint: null
W_regularizer: null
activation: linear
activity_regularizer: null
b_constraint: null
b_regularizer: null
batch_input_shape: !!python/tuple [null, 128]
bias: true
init: glorot_uniform
input_dim: 128
input_dtype: float32
name: dense_2
output_dim: 128
trainable: true
inbound_nodes:
- - [dropout_1, 0, 0]
name: dense_2
- class_name: BatchNormalization
config: {axis: -1, beta_regularizer: null, epsilon: 0.001, gamma_regularizer: null,
mode: 0, momentum: 0.99, name: batchnormalization_4, trainable: true}
inbound_nodes:
- - [dense_2, 0, 0]
name: batchnormalization_4
- class_name: Activation
config: {activation: relu, name: activation_4, trainable: true}
inbound_nodes:
- - [batchnormalization_4, 0, 0]
name: activation_4
- class_name: Dropout
config: {name: dropout_2, p: 0.5, trainable: true}
inbound_nodes:
- - [activation_4, 0, 0]
name: dropout_2
- class_name: Dense
config:
W_constraint: null
W_regularizer: null
activation: linear
activity_regularizer: null
b_constraint: null
b_regularizer: null
batch_input_shape: !!python/tuple [null, 128]
bias: true
init: glorot_uniform
input_dim: 128
input_dtype: float32
name: dense_3
output_dim: 128
trainable: true
inbound_nodes:
- - [dropout_2, 0, 0]
name: dense_3
- class_name: BatchNormalization
config: {axis: -1, beta_regularizer: null, epsilon: 0.001, gamma_regularizer: null,
mode: 0, momentum: 0.99, name: batchnormalization_5, trainable: true}
inbound_nodes:
- - [dense_3, 0, 0]
name: batchnormalization_5
- class_name: Activation
config: {activation: relu, name: activation_5, trainable: true}
inbound_nodes:
- - [batchnormalization_5, 0, 0]
name: activation_5
- class_name: Dropout
config: {name: dropout_3, p: 0.5, trainable: true}
inbound_nodes:
- - [activation_5, 0, 0]
name: dropout_3
- class_name: Dense
config:
W_constraint: null
W_regularizer: null
activation: softmax
activity_regularizer: null
b_constraint: null
b_regularizer: null
batch_input_shape: !!python/tuple [null, 128]
bias: true
init: glorot_uniform
input_dim: 128
input_dtype: float32
name: out_winner
output_dim: 2
trainable: true
inbound_nodes:
- - [dropout_3, 0, 0]
name: out_winner
- class_name: Dense
config:
W_constraint: null
W_regularizer: null
activation: sigmoid
activity_regularizer: null
b_constraint: null
b_regularizer: null
batch_input_shape: !!python/tuple [null, 128]
bias: true
init: glorot_uniform
input_dim: 128
input_dtype: float32
name: out_concede
output_dim: 1
trainable: true
inbound_nodes:
- - [dropout_3, 0, 0]
name: out_concede
- class_name: Dense
config:
W_constraint: null
W_regularizer: null
activation: linear
activity_regularizer: null
b_constraint: null
b_regularizer: null
batch_input_shape: !!python/tuple [null, 128]
bias: true
init: glorot_uniform
input_dim: 128
input_dtype: float32
name: out_secs
output_dim: 1
trainable: true
inbound_nodes:
- - [dropout_3, 0, 0]
name: out_secs
name: model_1
output_layers:
- [out_winner, 0, 0]
- [out_concede, 0, 0]
- [out_secs, 0, 0]
keras_version: 1.2.1