-
Notifications
You must be signed in to change notification settings - Fork 0
/
Homework4.tex
79 lines (62 loc) · 3.34 KB
/
Homework4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
\documentclass[paper=letter, fontsize=11pt]{scrartcl} % Letter paper and 11pt font size
\usepackage{amstext, amsmath, amssymb}
\usepackage[T1]{fontenc} % Use 8-bit encoding that has 256 glyphs
\usepackage[english]{babel} % English language/hyphenation
\usepackage{amsmath,amsfonts,amsthm} % Math packages
\usepackage{fancyhdr} % Custom headers and footers
\pagestyle{fancyplain} % Makes all pages in the document conform to the custom headers and footers
\fancyhead{} % No page header
\fancyfoot[L]{} % Empty left footer
\fancyfoot[C]{} % Empty center footer
\fancyfoot[R]{\thepage} % Page numbering for right footer
\renewcommand{\headrulewidth}{0pt} % Remove header underlines
\renewcommand{\footrulewidth}{0pt} % Remove footer underlines
\setlength{\headheight}{13.6pt} % Customize the height of the header
\setlength\parindent{0pt} % Remove all indentation from paragraps.
%----------------------------------------------------------------------------------------
% TITLE SECTION
%----------------------------------------------------------------------------------------
\newcommand{\horrule}[1]{\rule{\linewidth}{#1}} % Create horizontal rule command with 1 argument of height
\title{
\normalfont \normalsize
\textsc{San Francisco State University} \\ [25pt]
\horrule{0.5pt} \\[0.4cm] % Thin top horizontal rule
\huge MATH 301 Assignment 4 \\ % The assignment title
\horrule{2pt} \\[0.5cm] % Thick bottom horizontal rule
}
\author{Omar Sandoval}
\date{\normalsize\today}
\begin{document}
\maketitle
%----------------------------------------------------------------------------------------
% PROBLEM 2
%----------------------------------------------------------------------------------------
\textbf{2.} By using a truth table prove that, for sets $A, B,$ and $C$,\\
$A \cup ( B \cap C ) = ( A \cup B ) \cap ( A \cup C )$ \\
Draw a Venn diagram to illustrate the proof. \\
%----------------------------------------------------------------------------------------
% PROBLEM 4
%----------------------------------------------------------------------------------------
\textbf{4.} Prove by contradiction or otherwise that $A \cap B = B \cap C$ and $ A \cup B
= A \cup C$ if and only if $B = C$. \\
%----------------------------------------------------------------------------------------
% PROBLEM 5
%----------------------------------------------------------------------------------------
\textbf{5.} Using truth tables, prove that for sets A, B and C, \\
(i) $(A \cup C) - B \subset (A - B) \cup C$ \\
(ii) $(A \cap C) - B = (A - B) \cap C$ \\
Draw Venn diagrams to illustrate the proofs.
Prove that there is equality in the first of these results if and only if $B \cap C$
$\not= \emptyset$. \\
Deduce from the second of these results that $(A-B)\cap C = \emptyset$ if and only if
$A \cap C \subset B$.
%----------------------------------------------------------------------------------------
% PROBLEM 7
%----------------------------------------------------------------------------------------
%----------------------------------------------------------------------------------------
% PROBLEM 12
%----------------------------------------------------------------------------------------
%----------------------------------------------------------------------------------------
% PROBLEM 13
%----------------------------------------------------------------------------------------
\end{document}