-
Notifications
You must be signed in to change notification settings - Fork 0
/
Homework5.tex
172 lines (138 loc) · 5.93 KB
/
Homework5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
\documentclass[paper=letter, fontsize=11pt]{scrartcl} % Letter paper and 11pt font size
\usepackage{amstext, amsmath, amssymb, cases, graphicx}
\usepackage[T1]{fontenc} % Use 8-bit encoding that has 256 glyphs
\usepackage[english]{babel} % English language/hyphenation
\usepackage{amsmath,amsfonts,amsthm} % Math packages
\usepackage{fancyhdr} % Custom headers and footers
\pagestyle{fancyplain} % Makes all pages in the document conform to the custom headers and footers
\fancyhead{} % No page header
\fancyfoot[L]{} % Empty left footer
\fancyfoot[C]{} % Empty center footer
\fancyfoot[R]{\thepage} % Page numbering for right footer
\renewcommand{\headrulewidth}{0pt} % Remove header underlines
\renewcommand{\footrulewidth}{0pt} % Remove footer underlines
\setlength{\headheight}{13.6pt} % Customize the height of the header
\setlength\parindent{0pt} % Remove all indentation from paragraps.
%----------------------------------------------------------------------------------------
% TITLE SECTION
%----------------------------------------------------------------------------------------
\newcommand{\horrule}[1]{\rule{\linewidth}{#1}} % Create horizontal rule command with 1 argument of height
\title{
\normalfont \normalsize
\textsc{San Francisco State University} \\ [25pt]
\horrule{0.5pt} \\[0.4cm] % Thin top horizontal rule
\huge MATH 301 Assignment 5 \\ % The assignment title
\horrule{2pt} \\[0.5cm] % Thick bottom horizontal rule
}
\author{Omar Sandoval}
\date{\normalsize\today}
\begin{document}
\maketitle
%----------------------------------------------------------------------------------------
% PROBLEM #14
%----------------------------------------------------------------------------------------
\textbf{14.} Define functions $f$ and $g$: $\mathbb{R} \rightarrow \mathbb{R}$ by $f(x) =
x^2$ and $g(x) = x^2-1$. Find the functions $f \circ f$, $f \circ g$, $g \circ f$, $g
\circ g$. \\
List the elements of the set ${x \in \mathbb{R} | f(g(x)) = g(f(x))}$ \\
$(f \circ f) = x^4$ \\
$(f \circ g) = (x^2 -1)^2$ \\
$(g \circ f) = x^2 -1$ \\
$(g \circ g) = (x^2 - 1)^2 -1$ \\
\begin{align*}
f(g(x)) = g(f(x)) &\Leftrightarrow (x^2 - 1)^2 - 1 \\
&\Leftrightarrow x^4 - 2x^2 + 1 = x^4 - 1 \\
&\Leftrightarrow -2x^2 + 2 = 0 \\
&\Leftrightarrow x^2 = 1 \\
&\Leftrightarrow x = \pm 1
\end{align*}
So, ${x \in \mathbb{R} | f(g(x)) = g(f(x))}$. \\
%----------------------------------------------------------------------------------------
% PROBLEM #16 (ii, iv, v, vi)
%----------------------------------------------------------------------------------------
\textbf{16.} Determine which of the following functions $f_i: \mathbb{R} \rightarrow
\mathbb{R}$: are injective, which are surjective and which are bijective. Write down an
inverse function of each of the bijections. \\
\textbf{(ii)} $f_2(x) = x^3$; \\
$f_2$ is bijective. \\
So, since $y=f_2(x) \Leftrightarrow y = x^3 \Leftrightarrow x = y^{1/3}$ for $x, y \in
\mathbb{R}$, we can see that each element of $\mathbb{R}$ has one pre-image under $f_2$.
Clearly, $f_2$ is a bijection. \\
$f_2^{-1}(x) = x^{1/3}$ \\
\textbf{(iv)} $f_4(x) = x^3 - 3x^2 + 3x - 1$; \\
$f_4$ is bijective. \\
So, since $f_4(x) \Leftrightarrow y = x^2 - 3x^2 + 3x - 1 \Leftrightarrow x = y^{1/3} + 1$
for $x, y \in \mathbb{R}$, we cam see that each element of $\mathbb{R}$ has one pre-image
under $f_4$. Clearly, $f_4$ is a bijection. \\
$f_4^{-1}(x) = x^{1/3} + 1$ \\
\textbf{(v)} $f_5(x) = e^x$; \\
$f_5$ is injective and not surjective. \\
$f_5^{-1}=log(x)$ \\
$e^x$ never takes on any negative value, thus, it cannot be surjective.
\textbf{(vi)}
\[f_6(x) = \left\{
\begin{array}{lr}
x^2 & \text{ if } x \ge 0\\
-x^2 & \text{ if } x \le 0
\end{array}
\right.
\]
$f_6$ is bijective.
\[f_6^{-1}(x) = \left\{
\begin{array}{lr}
x^{1/2} & \text{ if } x \ge 0\\
-\sqrt{-x} & \text{ if } x \le 0
\end{array}
\right.
\]
%----------------------------------------------------------------------------------------
% PROBLEM #17
%----------------------------------------------------------------------------------------
\textbf{17.} Functions $f:\mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow
\mathbb{R}$ are defined as follows. \\
\begin{numcases}{f(x)=}
x + 2 & if $x < -1$,
\\
-x & if $-1 \le x \le 1$,
\\
x - 2 & if $x > 1$.
\end{numcases}
\begin{numcases}{g(x)=}
x - 2 & if $x < -1$,
\\
-x & if $-1 \le x \le 1$,
\\
x + 2 & if $x > 1$.
\end{numcases}
\\
Find the functions $f \circ g$ and $g \circ f$. Is $g$ the inverse of the function $f$?
Is $f$ injective or surjective? How about $g$? Sketch and compare the graphs of these functions.
\\
$f \circ g = I_\mathbb{R}$ \\
\[g \circ f(x) = \left\{
\begin{array}{lr}
x & \text{ if } x < -3, \\
-x - 2 & \text{ if } -3 \le x < -1, \\
x if -1 & \text{ if } \le x \le 1, \\
2 - x & \text{ if } 1 < x \le 3, \\
x & \text{ if } x > 3.
\end{array}
\right.
\]
$g$ is not the inverse function of $f$. We can see that $f(-2) = f(0) = f(2) = 0$.
If $g$ were the inverse function of $f$, we would have $g(0) = -2, g(0) = 0, g(0) = 2.$
Which is not possible since $g$ is single-valued. $f$ is not injective and therefore
not invertible. \\
$f$ is surjective but not injective, and $g$ is injective but not surjective. \\
The graphs of $f(x)$ and $g(x)$ follow:
\includegraphics[scale=0.5]{graphs.png}
\\
%----------------------------------------------------------------------------------------
% PROBLEM #18
%----------------------------------------------------------------------------------------
\textbf{18.} Suppose that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are surjections. Prove that the
composite $g \circ f: X \rightarrow Z$ is a surjection. \\
Let $z \in Z$. Since $g$ is a surjection, there exists a $y \in Y$ such that $g(y)=\mathbb{z}$.
But $f$ is a surjection, then there exists an $x \in X$ such that $f(x) = y$. Therefore,
$(g \circ f)(x) = \mathbb{z}$, and $(g \circ f): X \rightarrow Z$ is then a surjection. \\
\end{document}