-
Notifications
You must be signed in to change notification settings - Fork 0
/
Homework9.tex
130 lines (111 loc) · 5.45 KB
/
Homework9.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
\documentclass[paper=letter, fontsize=11pt]{scrartcl} % Letter paper and 11pt font size
\usepackage{amstext, amsmath, amssymb}
\usepackage[T1]{fontenc} % Use 8-bit encoding that has 256 glyphs
\usepackage[english]{babel} % English language/hyphenation
\usepackage{amsmath,amsfonts,amsthm} % Math packages
\usepackage{fancyhdr} % Custom headers and footers
\pagestyle{fancyplain} % Makes all pages in the document conform to the custom headers and footers
\fancyhead{} % No page header
\fancyfoot[L]{} % Empty left footer
\fancyfoot[C]{} % Empty center footer
\fancyfoot[R]{\thepage} % Page numbering for right footer
\renewcommand{\headrulewidth}{0pt} % Remove header underlines
\renewcommand{\footrulewidth}{0pt} % Remove footer underlines
\setlength{\headheight}{13.6pt} % Customize the height of the header
\setlength\parindent{0pt} % Remove all indentation from paragraps.
%----------------------------------------------------------------------------------------
% TITLE SECTION
%----------------------------------------------------------------------------------------
\newcommand{\horrule}[1]{\rule{\linewidth}{#1}} % Create horizontal rule command with 1 argument of height
\title{
\normalfont \normalsize
\textsc{San Francisco State University} \\ [25pt]
\horrule{0.5pt} \\[0.4cm] % Thin top horizontal rule
\huge MATH 301 Assignment 4 \\ % The assignment title
\horrule{2pt} \\[0.5cm] % Thick bottom horizontal rule
}
\author{Omar Sandoval}
\date{\normalsize\today}
\begin{document}
\maketitle
%----------------------------------------------------------------------------------------
% PROBLEM #1
%----------------------------------------------------------------------------------------
\textbf{1.} Prove, for positive integers $n$, that 7 divides $6^n + 1$ if and only if $n$
is odd.
\\
We can see that 7 divides $6^n + 1$ if and only if $6^n + 1 \equiv 0 \text{ mod } 7$.
Since $6 \equiv (-1) \text{ mod } 7$, we get the following; $6^n + 1 \equiv (-1)^n + 1 \text{ mod } 7$.
We see now that when $n$ is odd, $(-1)^n + 1 \equiv -1 + 1 \equiv 0 \text{ mod } 7$ and when $n$
is even; $(-1)^n + 1 \text{ mod } 7 \equiv 2 \not\equiv 0 \text{ mod } 7$
\\
%----------------------------------------------------------------------------------------
% PROBLEM #3
%----------------------------------------------------------------------------------------
\textbf{3.} Suppose that a positive integer is written in decimal notation as
$n=a_k a_{k-1} \dots a_2a_1a_0$ where $0 \le a_i \le 9$. Prove that $n$ is divisible by
9 if and only if the sum of its digits $a_k + a_{k-1} + \dots + (-1)^k a_k$ is divisible
by 11.
\\
We can check that both $n$ and the sum of it's digits are $\equiv \text{ mod } 9$. \\
We can write $n$ as; $n = \sum_{i=10}^k a_i 10^i$.
Since $10 \equiv 1 \text{ mod } 9$, it follows that $10^k \equiv 1 \text{ mod } 9$.
Thus, $n \equiv 10^ka_k + 10^{k-1} a_{k-1} + \dots + 10^1 a_1 + a_0 \equiv a_k + \dots
+ a_0 \text{ mod } 9$.
\\
Finally, we see that the sum of the digits is congruent to $n \text{ mod } 9$, sow the
sum of the digits is divisible by 9 if and only if $n$ is divisible by 9.
\\
%----------------------------------------------------------------------------------------
% PROBLEM #4
%----------------------------------------------------------------------------------------
\textbf{4.} Suppose that a positive integer is written in decimal notation as
$n=a_k a_{k-1} \dots a_2a_1a_0$ where $0 \le a_i \le 9$. Prove that $n$ is divisible by
11 if and only if the sum of its digits $a_0 - a_1 + \dots + (-1)^ka_k$ is divisible
by 11.
\\
We can see that $10 \equiv -1 \text{ mod } 11$, we then have $10^k \equiv 1 \text{ mod } 11$
if $k$ is even and $10^k \equiv -1 \text{ mod } 11$ if $k$ is odd.
Thus, $n \equiv a_0 + 10^1 a_1 + \dots + 10^k a_k \equiv a_0 - a_1 + \dots + (-1)^k a_k
\text{ mod } 11$.
Finally, we see that the sum of the digits is congruent to $n \text{ mod } 11$, so one is
divisible by 11 if and only if the other is also divisible by 11.
\\
%----------------------------------------------------------------------------------------
% PROBLEM #7
%----------------------------------------------------------------------------------------
\textbf{7.} What is the last digit of $2^{1000}$?
\\
We can rewrite this statement as; $2^1000$ modulo $10$, and, since $2^5 \equiv 2 mod 10$;
We have the following;
\begin{align*}
2^1000 &\equiv (2^5)^{200} \\
&\equiv 2^{200} \\
&\equiv (2^5)^{40} \\
&\equiv 2^{40} \\
&\equiv (2^5)^8 \\
&\equiv 2^8 \\
&\equiv 2^5 \times 2^3 \\
&\equiv 2 \times 2^3 \\
&\equiv 2^4 \\
&\equiv 6 \text{ mod } 10.
\end{align*}
%----------------------------------------------------------------------------------------
% PROBLEM #9
%----------------------------------------------------------------------------------------
\textbf{9.} Solve the following linear congruences; \\
\textbf{(i)} $3x \equiv 15 \text{ mod } 18;$ \\
\textbf{(ii)} $3x \equiv 16 \text{ mod } 18;$ \\
\textbf{(iii)} $4x \equiv 16 \text{ mod } 18;$ \\
\textbf{(iv)} $4x \equiv 14 \text{ mod } 18; $
\\
%----------------------------------------------------------------------------------------
% PROBLEM #10
%----------------------------------------------------------------------------------------
\textbf{10.} Solve the following linear congruences; \\
\textbf{(i)} $23x \equiv 16 \text{ mod } 107;$ \\
\textbf{(ii)} $3x \equiv 16 \text{ mod } 18;$ \\
\textbf{(iii)} $4x \equiv 16 \text{ mod } 18;$ \\
\textbf{(iv)} $4x \equiv 14 \text{ mod } 18; $
\\
\end{document}