-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathutils.cpp
executable file
·233 lines (206 loc) · 5.06 KB
/
utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include <iostream>
#include <fstream>
#include <sstream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <iterator>
#include <cassert>
#include "Eigen/Dense"
#define uint unsigned int
using namespace Eigen;
using namespace std;
namespace Eigen {
istream& operator>>(istream& s, MatrixXd& m) {
for (uint i=0; i<m.rows(); i++)
for (uint j=0; j<m.cols(); j++)
s >> m(i,j);
return s;
}
istream& operator>>(istream& s, VectorXd& m) {
for (uint i=0; i<m.size(); i++)
s >> m(i);
return s;
}
}
MatrixXd softmax(const MatrixXd &x) {
RowVectorXd m = x.colwise().maxCoeff();
MatrixXd t = (x.rowwise() - m).array().exp();
return t.array().rowwise() / t.colwise().sum().array();
}
MatrixXd smaxentp(const MatrixXd &y, const MatrixXd &r) {
return y-r;
}
MatrixXd relu(const MatrixXd &x) {
return x.array().max(0);
}
MatrixXd relup(const MatrixXd &x) {
return (x.array() > 0).cast<double>();
}
double str2double(const string& s) {
istringstream i(s);
double x;
if (!(i >> x))
return 0;
return x;
}
class LookupTable {
public:
void load(string fname, uint n, uint d, bool noUnknown=false);
//ColXpr operator[](string word);
VectorXd operator[](string word);
void gradAdd(string word, VectorXd v);
void update();
private:
double lr;
map<string, uint> table; // word -> index
MatrixXd data; // index -> vector representation
MatrixXd gdata; // gradients
MatrixXd adata; // adagrad past
set<uint> modifiedCols;
};
void LookupTable::load(string fname, uint n, uint d, bool noUnknown) {
ifstream in(fname.c_str());
assert(in.is_open());
string line;
if (noUnknown) n++;
data = MatrixXd(d,n);
gdata = adata = MatrixXd::Zero(d,n);
adata.fill(1e-6);
uint j=0;
while(std::getline(in, line)) {
std::istringstream ss(line);
std::istream_iterator<std::string> begin(ss), end;
//putting all the tokens in the vector
std::vector<std::string> tokens(begin, end);
for (uint i=0; i<d; i++)
data(i,j) = str2double(tokens[i+1]);
table[tokens[0]] = j;
j++;
if (j == n)
break;
}
if (noUnknown) {
VectorXd v = data.rowwise().mean();
data.col(n-1) = v;
table["*UNKNOWN*"] = n-1;
}
double min = data.minCoeff();
//cout << "Lookup table min: " << min << endl;
//data = data.array()-min;
}
VectorXd LookupTable::operator[](string word) {
map<string,uint>::iterator it;
// this might not be the best place for this,
// if i'm calling this frequently
if (word == "-LRB-")
word = "(";
else if (word == "-RRB-")
word = ")";
else if (word == "-LSB-")
word = "(";
else if (word == "-RSB-")
word = ")";
else if (word == "-LCB-")
word = "(";
else if (word == "-RCB-")
word = ")";
it = table.find(word);
if (it != table.end()) // exists
return data.col(table[word]);
else
return data.col(table["*UNKNOWN*"]);
}
void LookupTable::gradAdd(string word, VectorXd v) {
map<string,uint>::iterator it;
if (word == "-LRB-")
word = "(";
else if (word == "-RRB-")
word = ")";
else if (word == "-LSB-")
word = "(";
else if (word == "-RSB-")
word = ")";
else if (word == "-LCB-")
word = "(";
else if (word == "-RCB-")
word = ")";
it = table.find(word);
if (it != table.end()) {// exists
gdata.col(table[word]) += v;
modifiedCols.insert(table[word]);
} else {
gdata.col(table["*UNKNOWN*"]) += v;
modifiedCols.insert(table[word]);
}
}
void LookupTable::update() {
lr = 0.001;
for (auto i : modifiedCols) {
adata.col(i) = (adata.col(i).cwiseProduct(adata.col(i)) +
gdata.col(i).cwiseProduct(gdata.col(i))).cwiseSqrt();
data.col(i) -= lr*gdata.col(i).cwiseQuotient(adata.col(i));
gdata.col(i).setZero();
}
modifiedCols.clear();
}
// index of max in a vector
uint argmax(const VectorXd& x) {
double max = x(0);
uint maxi = 0;
for (uint i=1; i<x.size(); i++) {
if (x(i) > max) {
max = x(i);
maxi = i;
}
}
return maxi;
}
// this is used for randomly initializing an Eigen matrix
double urand(double dummy) {
double min = -0.01, max = 0.01;
return (double(rand())/RAND_MAX)*(max-min) + min;
}
// KFY shuffle (uniformly randomly) of a vector
template <class T>
void shuffle(vector<T>& v) {
for (uint i=v.size()-1; i>0; i--) {
uint j = (rand() % i);
T tmp = v[i];
v[i] = v[j];
v[j] = tmp;
}
}
template <class T, class T2>
void shuffle(vector<T>& v, vector<T2>& w) {
assert(w.size() == v.size());
for (uint i=v.size()-1; i>0; i--) {
uint j = (rand() % i);
T tmp = v[i];
v[i] = v[j];
v[j] = tmp;
T2 tmp2 = w[i];
w[i] = w[j];
w[j] = tmp2;
}
}
bool isWhitespace(std::string str) {
for(uint i=0; i<str.size(); i++) {
if (!isspace(str[i]))
return false;
}
return true;
}
vector<string> split(const string &s, char delim) {
stringstream ss(s);
string item;
vector<string> elems;
while (getline(ss, item, delim)) {
elems.push_back(item);
}
return elems;
}