-
Notifications
You must be signed in to change notification settings - Fork 0
/
clock.c
244 lines (207 loc) · 7.01 KB
/
clock.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
* clock.c - Routines for using the cycle counters on x86,
* Alpha, and Sparc boxes.
*/
#include "clock.h"
#include <stdio.h>
#include <stdlib.h>
#include <sys/times.h>
#include <unistd.h>
/*******************************************************
* Machine dependent functions
*
* Note: the constants __i386__ and __alpha
* are set by GCC when it calls the C preprocessor
* You can verify this for yourself using gcc -v.
*******************************************************/
#if defined(__i386__)
/*******************************************************
* Pentium versions of start_counter() and get_counter()
*******************************************************/
/* $begin x86cyclecounter */
/* Initialize the cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;
/* Set *hi and *lo to the high and low order bits of the cycle counter.
Implementation requires assembly code to use the rdtsc instruction. */
void access_counter(unsigned *hi, unsigned *lo) {
asm("rdtsc; movl %%edx,%0; movl %%eax,%1" /* Read cycle counter */
: "=r"(*hi), "=r"(*lo) /* and move results to */
: /* No input */ /* the two outputs */
: "%edx", "%eax");
}
/* Record the current value of the cycle counter. */
void start_counter() { access_counter(&cyc_hi, &cyc_lo); }
/* Return the number of cycles since the last call to start_counter. */
double get_counter() {
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double)hi * (1 << 30) * 4 + lo;
if (result < 0) {
fprintf(stderr, "Error: counter returns neg value: %.0f\n", result);
}
return result;
}
/* $end x86cyclecounter */
#elif defined(__alpha)
/****************************************************
* Alpha versions of start_counter() and get_counter()
***************************************************/
/* Initialize the cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;
/* Use Alpha cycle timer to compute cycles. Then use
measured clock speed to compute seconds
*/
/*
* counterRoutine is an array of Alpha instructions to access
* the Alpha's processor cycle counter. It uses the rpcc
* instruction to access the counter. This 64 bit register is
* divided into two parts. The lower 32 bits are the cycles
* used by the current process. The upper 32 bits are wall
* clock cycles. These instructions read the counter, and
* convert the lower 32 bits into an unsigned int - this is the
* user space counter value.
* NOTE: The counter has a very limited time span. With a
* 450MhZ clock the counter can time things for about 9
* seconds. */
static unsigned int counterRoutine[] = {0x601fc000u, 0x401f0000u, 0x6bfa8001u};
/* Cast the above instructions into a function. */
static unsigned int (*counter)(void) = (void *)counterRoutine;
void start_counter() {
/* Get cycle counter */
cyc_hi = 0;
cyc_lo = counter();
}
double get_counter() {
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;
ncyc_lo = counter();
ncyc_hi = 0;
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double)hi * (1 << 30) * 4 + lo;
if (result < 0) {
fprintf(stderr, "Error: Cycle counter returning negative value: %.0f\n",
result);
}
return result;
}
#else
/****************************************************************
* All the other platforms for which we haven't implemented cycle
* counter routines. Newer models of sparcs (v8plus) have cycle
* counters that can be accessed from user programs, but since there
* are still many sparc boxes out there that don't support this, we
* haven't provided a Sparc version here.
***************************************************************/
void start_counter() {
printf("ERROR: You are trying to use a start_counter routine in clock.c\n");
printf("that has not been implemented yet on this platform.\n");
printf("Please choose another timing package in config.h.\n");
exit(1);
}
double get_counter() {
printf("ERROR: You are trying to use a get_counter routine in clock.c\n");
printf("that has not been implemented yet on this platform.\n");
printf("Please choose another timing package in config.h.\n");
exit(1);
}
#endif
/*******************************
* Machine-independent functions
******************************/
double ovhd() {
/* Do it twice to eliminate cache effects */
int i;
double result;
for (i = 0; i < 2; i++) {
start_counter();
result = get_counter();
}
return result;
}
/* $begin mhz */
/* Estimate the clock rate by measuring the cycles that elapse */
/* while sleeping for sleeptime seconds */
double mhz_full(int verbose, int sleeptime) {
double rate;
start_counter();
sleep(sleeptime);
rate = get_counter() / (1e6 * sleeptime);
if (verbose) printf("Processor clock rate ~= %.1f MHz\n", rate);
return rate;
}
/* $end mhz */
/* Version using a default sleeptime */
double mhz(int verbose) { return mhz_full(verbose, 2); }
/** Special counters that compensate for timer interrupt overhead */
static double cyc_per_tick = 0.0;
#define NEVENT 100
#define THRESHOLD 1000
#define RECORDTHRESH 3000
/* Attempt to see how much time is used by timer interrupt */
static void callibrate(int verbose) {
double oldt;
struct tms t;
clock_t oldc;
int e = 0;
times(&t);
oldc = t.tms_utime;
start_counter();
oldt = get_counter();
while (e < NEVENT) {
double newt = get_counter();
if (newt - oldt >= THRESHOLD) {
clock_t newc;
times(&t);
newc = t.tms_utime;
if (newc > oldc) {
double cpt = (newt - oldt) / (newc - oldc);
if ((cyc_per_tick == 0.0 || cyc_per_tick > cpt) &&
cpt > RECORDTHRESH)
cyc_per_tick = cpt;
/*
if (verbose)
printf("Saw event lasting %.0f cycles and %d ticks. Ratio =
%f\n", newt-oldt, (int) (newc-oldc), cpt);
*/
e++;
oldc = newc;
}
oldt = newt;
}
}
if (verbose) printf("Setting cyc_per_tick to %f\n", cyc_per_tick);
}
static clock_t start_tick = 0;
void start_comp_counter() {
struct tms t;
if (cyc_per_tick == 0.0) callibrate(0);
times(&t);
start_tick = t.tms_utime;
start_counter();
}
double get_comp_counter() {
double time = get_counter();
double ctime;
struct tms t;
clock_t ticks;
times(&t);
ticks = t.tms_utime - start_tick;
ctime = time - ticks * cyc_per_tick;
/*
printf("Measured %.0f cycles. Ticks = %d. Corrected %.0f cycles\n",
time, (int) ticks, ctime);
*/
return ctime;
}