-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathim2minPS.m
484 lines (397 loc) · 15 KB
/
im2minPS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
function [minPS, minPSraw, minPSstruct] = im2minPS(im)
%% Convert images to minPS statistics
%
% [minPS minPSraw minPSstruct] = im2minPS(im)
%
% Input:
% im - should be a grayscale image (128 x 128 double).
% Or, this can be a cell including an image in each component (N x
% 1). (N = number of images)
% The unit is supposed to be luminance (cd/m2).
% The average and SD of luminances are supposed to be 15 and 6 cd/m2, respectively.
%
% Output:
% minPS - a matrix [image num x 29] or a vector [1 x 29]
% that contains minPS statistics (29 parameters)
% The values are normalized such that the image database used in Okazawa et al.(2015).
% have 0 mean and 1 SD.
% minPSraw - Unnormalized version of minPS statistics
% (note: still the values are normalized in each
% calculation step to eliminate artifacts due to large
% difference in values across filter scales. See comments
% in the code for the details).
% minPSstruct - a struct containing minPS values
%
%
% G Okazawa (2015)
addpath matlabPyrTools;
addpath matlabPyrTools/MEX;
addpath textureSynth;
addpath textureSynth/MEX;
Nsc = 4;
Nor = 4;
Na = 7;
if iscell(im)
for n=1:length(im)
if ~isequal(size(im{n}), [128 128])
error('Image size should be 128 x 128');
end
PS(n) = textureAnalysis_acr(im{n}, Nsc, Nor, Na); %#ok<AGROW>
end
else
if ~isequal(size(im), [128 128])
error('Image size should be 128 x 128');
end
PS = textureAnalysis_acr(im, Nsc, Nor, Na);
end
d = load('parameters_Okazawa2015.mat');
param = d.param;
PS = reduce_pixelStats(PS);
PS = reduce_magMeans(PS, param);
PS = reduce_autoCorrReal(PS, param);
PS = reduce_parentRealCorr(PS, param);
PS = reduce_cousinMagCorr(PS, param);
PS = reduce_autoCorrMag(PS, param);
PS = reduce_parentMagCorr(PS, param);
PS = rmfield(PS, 'pixelLPStats');
PS = rmfield(PS, 'varianceHPR');
PS = rmfield(PS, 'cousinRealCorr');
minPSstruct = PS;
minPSraw = vectorize_minPS(minPSstruct);
minPS = normalize_values(minPSraw, param);
end
%% reduce_pixelStats
% From marginal statistics, extract skewness only
function PS = reduce_pixelStats(PS)
for n=1:length(PS)
PS(n).pixelStats = PS(n).pixelStats(3); % skew only
end
end
%% reduce_magMeans
% extract spectral statistics.
% reduced to 2 scale and 2 orientation
function [PS, param] = reduce_magMeans(PS, param)
magM = [PS.magMeans]';
magM = magM(:, 2:end-1); % remove high and low pass filter
Nimg = size(magM,1);
% normalization of magnitude of each subband
% this is necessary because, without normalization, averaging across scales and
% orientations generate results dominated by low frequency scales
% (because they have large amplitudes).
if ~exist('param', 'var')
[magM, param.magMeans_mn, param.magMeans_sd] = zscore(magM);
else
magM = (magM - (ones(Nimg,1) * param.magMeans_mn)) ./ (ones(Nimg,1) * param.magMeans_sd); % normalize
end
magM = reshape(magM, Nimg, 4, 4); % Nimg x ori x scale
newMagM = zeros(Nimg, 4);
newMagM(:,1) = magM(:,1,1) + magM(:,1,2) + (magM(:,2,1) + magM(:,2,2)) * .5 + (magM(:,4,1) + magM(:,4,2)) * .5; % fine vertical
newMagM(:,2) = magM(:,3,1) + magM(:,3,2) + (magM(:,2,1) + magM(:,2,2)) * .5 + (magM(:,4,1) + magM(:,4,2)) * .5; % fine horizontal
newMagM(:,3) = magM(:,1,3) + magM(:,1,4) + (magM(:,2,3) + magM(:,2,4)) * .5 + (magM(:,4,3) + magM(:,4,4)) * .5; % coarse vertical
newMagM(:,4) = magM(:,3,3) + magM(:,3,4) + (magM(:,2,3) + magM(:,2,4)) * .5 + (magM(:,4,3) + magM(:,4,4)) * .5; % coarse horizontal
for n=1:Nimg
PS(n).magMeans = newMagM(n,:);
end
end
%% reduce_autoCorrReal
% extract linear cross position parameters
function [PS, param] = reduce_autoCorrReal(PS, param)
param_mode = exist('param', 'var');
Nimg = length(PS);
% concatenate
acrmat = zeros(Nimg, 7*7, 4,4); % Nimg x pixel(49) x 4 scale x 4 ori
for n=1:Nimg
acr = PS(n).autoCorrReal;
acrmat(n,:,:,:) = reshape(acr, 7*7, 4, 4);
end
% normalize and average
if ~param_mode
MN = zeros(Nimg, 4); % Nimg x 4 scale
SD = zeros(Nimg, 4);
for n=1:Nimg
acr = PS(n).autoCorrReal;
for m=1:4
a = acr(:,:,m,:);
MN(n,m) = mean(a(:));
SD(n,m) = std(a(:));
end
end
MN = mean(MN,1);
SD = mean(SD,1);
param.autoCorrReal_mn = MN;
param.autoCorrReal_sd = SD;
else
MN = param.autoCorrReal_mn;
SD = param.autoCorrReal_sd;
end
for n=1:4
acrmat(:,:,n,:) = (acrmat(:,:,n,:) - MN(n))/SD(n);
% normalize each scale because different scales have very
% different mean.
end
acrmat = permute(acrmat, [1 3 4 2]); % Nimg x 4 scale x 4 ori x 49
acrmat = reshape(acrmat, Nimg * 4 * 4, 49);
% the mean should be 0 before running pca
if ~param_mode
param.autoCorrReal_acrmat_mn = mean(acrmat,1);
end
acrmat = acrmat - ones(size(acrmat,1),1) * param.autoCorrReal_acrmat_mn;
% PCA
if ~param_mode
[acr_coef, acr_score, acr_latent] = pca(acrmat);
ndim_ac = 4;
acr_score = acr_score(:, 1:ndim_ac); % (Nimg*4*4) x ndim_ac
param.autoCorrReal_coef = acr_coef;
param.autoCorrReal_latent = acr_latent;
param.autoCorrReal_ndim = ndim_ac;
else
ndim_ac = param.autoCorrReal_ndim;
acr_score = acrmat * param.autoCorrReal_coef;
acr_score = acr_score(:, 1:ndim_ac); % (Nimg*4*4) x ndim_ac
end
% averaging
acr_score = reshape(acr_score, Nimg, 4, 4, ndim_ac); % Nimg x 4scale x 4ori x N pc
acr_score = mean(mean(acr_score, 2),3); % Nimg x 1 x 1 x N pc
acr_score = reshape(acr_score, [Nimg ndim_ac]);
% back to param
for n=1:Nimg
PS(n).autoCorrReal = acr_score(n,:);
end
end
%% reduce_parentRealCorr
% extract linear cross scale
function [PS, param] = reduce_parentRealCorr(PS, param)
Nimg = length(PS);
% concatenate
parentCorr = zeros(Nimg, 4, 4, 3); % Nimg x 4ori x 4ori x 3scale
MN = zeros(Nimg, 3);
SD = zeros(Nimg, 3);
for n=1:Nimg
a = PS(n).parentRealCorr(1:4,1:4,1:3); % discard 'imaginary correlation'
parentCorr(n,:,:,:) = a;
a = reshape(a, 16,3);
MN(n,:) = mean(a,1);
SD(n,:) = std(a,1,1);
end
% normalize
if ~exist('param', 'var')
MN = mean(MN,1);
SD = mean(SD,1);
param.parentRealCorr_mn = MN;
param.parentRealCorr_sd = SD;
else
MN = param.parentRealCorr_mn;
SD = param.parentRealCorr_sd;
end
for n=1:3
parentCorr(:,:,:,n) = (parentCorr(:,:,:,n) - MN(n))/SD(n);
% normalize by the mean of each scale
end
% average scale
parentCorr2 = zeros(Nimg, 4, 4, 2); % 4ori x 4ori x 2scale
parentCorr2(:,:,:,1) = parentCorr(:,:,:,1) + parentCorr(:,:,:,2) * .5;
parentCorr2(:,:,:,2) = parentCorr(:,:,:,3) + parentCorr(:,:,:,2) * .5;
% average ori
parentCorr3 = zeros(Nimg, 2, 2); % 2 ori x 2 scale
for n=1:2 % extract correlation between filter responses with the same orientation
parentCorr3(:, 1, n) = parentCorr2(:, 1, 1, n) + parentCorr2(:, 2, 2, n) * .5 + parentCorr2(:, 4, 4, n) * .5;
parentCorr3(:, 2, n) = parentCorr2(:, 3, 3, n) + parentCorr2(:, 2, 2, n) * .5 + parentCorr2(:, 4, 4, n) * .5;
end
% back
for n=1:Nimg
PS(n).parentRealCorr = squeeze(parentCorr3(n,:,:));
end
end
%% reduce_cousinMagCorr
% extract energy cross orientation
function [PS, param] = reduce_cousinMagCorr(PS, param)
Nimg = length(PS);
% concatenate
cousinCorr = zeros(Nimg, 6, 4); % Nimg x 6combination x 4scale
for n=1:Nimg
a = PS(n).cousinMagCorr(:,:,1:4);
a = reshape(a, 16,4);
a = a([2;3;4;7;8;12;], :);
% [2;3;4;7;8;12;] are non-diagonal combinations
% 2.. A x B, 3.. A x C, 4.. A x D
% 7.. B x C, 8.. B x D, 12.. C x D
% (A.. vertical, B.. right diagonal,
% C.. horizontal, D.. left diagonal)
cousinCorr(n,:,:) = a;
end
% normalize
if ~exist('param', 'var')
MN = zeros(Nimg, 4);
SD = zeros(Nimg, 4);
for n=1:Nimg
a = squeeze(cousinCorr(n,:,:));
MN(n,:) = mean(a,1);
SD(n,:) = std(a,1,1);
end
MN = mean(MN,1);
SD = mean(SD,1);
param.cousinMagCorr_mn = MN;
param.cousinMagCorr_sd = SD;
else
MN = param.cousinMagCorr_mn;
SD = param.cousinMagCorr_sd;
end
for n=1:3
cousinCorr(:,:,n) = (cousinCorr(:,:,n) - MN(n))/SD(n); % normalize each scale
end
% average scale
cousinCorr2 = zeros(Nimg, 6, 2); % Nimg x 6combination x 2scale
cousinCorr2(:,:,1) = cousinCorr(:,:,1) + cousinCorr(:,:,2); % fine
cousinCorr2(:,:,2) = cousinCorr(:,:,3) + cousinCorr(:,:,4); % coarse
% average ori
cousinCorr3 = zeros(Nimg, 3, 2); % Nimg x 3combination x 2scale
for n=1:2
cousinCorr3(:, 1, n) = cousinCorr2(:, 1, n) + cousinCorr2(:, 3, n); % A-B, A-D vertical vs. oblique
cousinCorr3(:, 2, n) = cousinCorr2(:, 2, n) + cousinCorr2(:, 5, n); % A-C, B-D vertical vs. horizontal and R oblique vs. L oblique
cousinCorr3(:, 3, n) = cousinCorr2(:, 4, n) + cousinCorr2(:, 6, n); % B-C, C-D horizontal vs. oblique
% (A.. vertical, B.. right diagonal,
% C.. horizontal, D.. left diagonal)
end
% back
for n=1:Nimg
PS(n).cousinMagCorr = squeeze(cousinCorr3(n,:,:));
end
end
%% reduce_autoCorrMag
% extract energy cross position
function [PS, param] = reduce_autoCorrMag(PS, param)
param_mode = exist('param', 'var');
Nimg = length(PS);
% concatenate
acmat = zeros(Nimg, 7*7, 4,4);
for n=1:Nimg
ac = PS(n).autoCorrMag;
acmat(n,:,:,:) = reshape(ac, 7*7, 4, 4);
end
% normalize and average
if ~param_mode
MN = zeros(Nimg, 4);
SD = zeros(Nimg, 4);
for n=1:Nimg
ac = PS(n).autoCorrMag;
for m=1:4
a = ac(:,:,m,:);
MN(n,m) = mean(a(:));
SD(n,m) = std(a(:));
end
end
MN = mean(MN,1);
SD = mean(SD,1);
param.autoCorrMag_mn = MN;
param.autoCorrMag_sd = SD;
else
MN = param.autoCorrMag_mn;
SD = param.autoCorrMag_sd;
end
for n=1:4
acmat(:,:,n,:) = (acmat(:,:,n,:) - MN(n))/SD(n); % normalize each scale
end
acmat = permute(acmat, [1 3 4 2]); % Nimg x 4 scale x 4 ori x 49
acmat = reshape(acmat, Nimg * 4 * 4, 49);
% the mean should be 0 before running pca
if ~param_mode
param.autoCorrMag_acmat_mn = mean(acmat,1);
end
acmat = acmat - ones(size(acmat,1),1) * param.autoCorrMag_acmat_mn;
% PCA
if ~param_mode
[ac_coef, ac_score, ac_latent] = pca(acmat);
ndim_ac = 3;
ac_score = ac_score(:, 1:ndim_ac); % Nimg*4 x ndim_ac
param.autoCorrMag_coef = ac_coef;
param.autoCorrMag_latent = ac_latent;
param.autoCorrMag_ndim = ndim_ac;
else
ndim_ac = param.autoCorrMag_ndim;
ac_score = acmat * param.autoCorrMag_coef;
ac_score = ac_score(:, 1:ndim_ac);
end
% averaging
ac_score = reshape(ac_score, Nimg, 4, 4, ndim_ac); % Nimg x 4scale x 4ori x N pc
ac_score = reshape(mean(ac_score, 2), [Nimg 4 ndim_ac]); % averaged across scale: Nimg x 1 x 4ori x N pc
ac_score2 = zeros(Nimg, 2, ndim_ac); % Nimg x 2ori x 3 pc
% averaging across ori
for n=1:ndim_ac
ac_score2(:,1,n) = ac_score(:,1,n) + ac_score(:,2,n) * .5 + ac_score(:,4,n) * .5;
ac_score2(:,2,n) = ac_score(:,3,n) + ac_score(:,2,n) * .5 + ac_score(:,4,n) * .5;
end
% back to param
for n=1:Nimg
ac = squeeze(ac_score2(n, :,:));
PS(n).autoCorrMag = ac;
end
end
%% reduce_parentMagCorr
% extract energy cross scale
function [PS, param] = reduce_parentMagCorr(PS, param)
Nimg = length(PS);
% concatenate
parentCorr = zeros(Nimg, 4, 4, 3); % Nimg x 4ori x 4ori x 3scale
for n=1:Nimg
a = PS(n).parentMagCorr(1:4,1:4,1:3);
parentCorr(n,:,:,:) = a;
end
% normalize
if ~exist('param', 'var')
MN = zeros(Nimg, 3);
SD = zeros(Nimg, 3);
for n=1:Nimg
a = parentCorr(n,:,:,:);
a = reshape(a, 16,3);
MN(n,:) = mean(a,1);
SD(n,:) = std(a,1,1);
end
MN = mean(MN,1);
SD = mean(SD,1);
param.parentMagCorr_mn = MN;
param.parentMagCorr_sd = SD;
else
MN = param.parentMagCorr_mn;
SD = param.parentMagCorr_sd;
end
for n=1:3
parentCorr(:,:,:,n) = (parentCorr(:,:,:,n) - MN(n))/SD(n); % normalize each scale
end
% average scale
parentCorr2 = zeros(Nimg, 4, 4, 2); % Nimg x 4ori x 4ori x 2scale
parentCorr2(:,:,:,1) = parentCorr(:,:,:,1) + parentCorr(:,:,:,2) * .5;
parentCorr2(:,:,:,2) = parentCorr(:,:,:,3) + parentCorr(:,:,:,2) * .5;
% extract cross correlation of the same orientation filter across
% scales
parentCorr3 = zeros(Nimg, 2, 2); % Nimg x 2ori x 2scale
for n=1:2
parentCorr3(:,1,n) = parentCorr2(:, 1, 1, n) + parentCorr2(:, 2, 2, n) * .5 + parentCorr2(:, 4, 4, n) * .5; % vertical
parentCorr3(:,2,n) = parentCorr2(:, 3, 3, n) + parentCorr2(:, 2, 2, n) * .5 + parentCorr2(:, 4, 4, n) * .5; % horizontal
end
% back
for n=1:Nimg
PS(n).parentMagCorr = squeeze(parentCorr3(n,:,:));
end
end
%% vectorize_minPS
function vector = vectorize_minPS(PS)
vector = zeros(length(PS), 29);
for n=1:length(PS)
vector(n,:) = [PS(n).magMeans(:)', ...
PS(n).pixelStats(:)', ...
PS(n).autoCorrReal(:)', ...
PS(n).parentRealCorr(:)', ...
PS(n).autoCorrMag(:)', ...
PS(n).cousinMagCorr(:)', ...
PS(n).parentMagCorr(:)'];
end
end
%% normalize_values
function [minPS, param] = normalize_values(minPSraw, param)
if ~exist('param', 'var')
param.Nmn = mean(minPSraw,1);
param.Nsd = std(minPSraw, 1,1);
end
minPS = minPSraw - ones(size(minPSraw,1),1) * param.Nmn;
minPS = minPS ./ (ones(size(minPS,1),1) * param.Nsd);
end