-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_circuit.py
144 lines (126 loc) · 5.1 KB
/
simple_circuit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import pandas as pd
import importlib
import os
from synbio_morpher.utils.common.setup import construct_circuit_from_cfg, prepare_config
from synbio_morpher.srv.io.manage.script_manager import script_preamble
from synbio_morpher.srv.io.manage.sys_interface import PACKAGE_NAME
from synbio_morpher.utils.evolution.evolver import Evolver
from synbio_morpher.utils.circuit.agnostic_circuits.circuit_manager import CircuitModeller
def five_circuits():
config = {
"interaction_simulator": {
"name": "IntaRNA",
"postprocess": True
},
"experiment": {
"purpose": "tests",
"debug_mode": True
},
"molecular_params": "./synbio_morpher/utils/common/configs/RNA_circuit/molecular_params.json",
"circuit_generation": {
"repetitions": 2000,
"species_count": 3,
"sequence_length": 20,
"generator_protocol": "template_mutate",
"proportion_to_mutate": 0.5
},
"mutations_args": {
"algorithm": "random",
"mutation_counts": 1,
"mutation_nums_within_sequence": [1],
"mutation_nums_per_position": 1,
"concurrent_species_to_mutate": "single_species_at_a_time"
},
"filters": {
"min_num_interacting": None,
"max_self_interacting": None,
"max_total": None
},
"signal": {
"inputs": ["RNA0"],
"outputs": ["RNA1"],
"function_name": "step_function",
"function_kwargs": {
"impulse_center": 400,
"impulse_halfwidth": 5,
"target": 10
}
},
"simulation": {
"dt0": 0.1,
"t0": 0,
"t1": 1200,
"solver": "diffrax",
"use_batch_mutations": True,
"batch_size": 100,
"max_circuits": 1000,
"device": "cpu"
},
"system_type": "RNA"
}
config, data_writer = script_preamble(config=config, data_writer=None)
config = prepare_config(config_file=config)
default_interaction = 0.0015
species_num = 9
cfg_dir = os.path.join(PACKAGE_NAME, 'utils', 'common', 'testing', 'configs')
cfg_dir = importlib.import_module(cfg_dir.replace(os.sep, '.')).__path__[0]
paths = [
# toy_mRNA_circuit_1890
os.path.join(cfg_dir, 'circuits', '0_weak.fasta'),
# toy_mRNA_circuit_1916
os.path.join(cfg_dir, 'circuits', '1_med_weak.fasta'),
# toy_mRNA_circuit_1598
os.path.join(cfg_dir, 'circuits', '2_medium.fasta'),
# toy_mRNA_circuit_1196
os.path.join(cfg_dir, 'circuits', '3_med_strong.fasta'),
# toy_mRNA_circuit_1491
os.path.join(cfg_dir, 'circuits', '4_strong.fasta')
]
interaction_paths = []
for inter in ['binding_rates_dissociation', 'eqconstants']:
interaction_paths.append([
# toy_mRNA_circuit_1890
os.path.join(cfg_dir, inter, f'0_weak_{inter}.csv'),
# toy_mRNA_circuit_1916
os.path.join(cfg_dir, inter, f'1_med_weak_{inter}.csv'),
# toy_mRNA_circuit_1598
os.path.join(cfg_dir, inter, f'2_medium_{inter}.csv'),
# toy_mRNA_circuit_1196
os.path.join(cfg_dir, inter,
f'3_med_strong_{inter}.csv'),
# toy_mRNA_circuit_1491
os.path.join(cfg_dir, inter, f'4_strong_{inter}.csv')
])
# interactions = np.expand_dims(np.expand_dims(np.arange(
# len(paths)), axis=1), axis=2) * np.ones((len(paths), species_num, species_num)) * default_interaction
interactions_cfg = [
{'binding_rates_association': config['molecular_params']
['creation_rate'], 'binding_rates_dissociation': bp, 'eqconstants': ep}
for bp, ep in zip(interaction_paths[0], interaction_paths[1])]
return [construct_circuit_from_cfg(
{'data_path': p, 'interactions': i}, config) for p, i in zip(paths, interactions_cfg)], config, data_writer
def mutate(circuits, config, data_writer):
for c in circuits:
c = Evolver(data_writer=data_writer,
sequence_type=config.get('system_type')).mutate(
c,
write_to_subsystem=True,
algorithm=config.get('mutations_args', {}).get('algorithm', 'random'))
return circuits, config, data_writer
def simulate(circuits, config, data_writer):
CircuitModeller(result_writer=data_writer, config=config).batch_circuits(
circuits=circuits,
write_to_subsystem=True,
batch_size=config['simulation'].get('batch_size', 100),
methods={
"compute_interactions": {},
"init_circuits": {'batch': True},
"simulate_signal_batch": {'ref_circuit': None,
'batch': True},
"write_results": {'no_visualisations': False,
'no_numerical': False}
})
circuits, config, data_writer = five_circuits()
mutate(circuits, config, data_writer)
simulate(circuits, config, data_writer)