-
Notifications
You must be signed in to change notification settings - Fork 242
/
transformer-singlestep.py
290 lines (242 loc) · 11.1 KB
/
transformer-singlestep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import torch
import torch.nn as nn
import numpy as np
import time
import math
from matplotlib import pyplot
torch.manual_seed(0)
np.random.seed(0)
# S is the source sequence length
# T is the target sequence length
# N is the batch size
# E is the feature number
#src = torch.rand((10, 32, 512)) # (S,N,E)
#tgt = torch.rand((20, 32, 512)) # (T,N,E)
#out = transformer_model(src, tgt)
input_window = 100 # number of input steps
output_window = 1 # number of prediction steps, in this model its fixed to one
block_len = input_window + output_window # for one input-output pair
batch_size = 10
train_size = 0.8
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
# div_term = torch.exp(
# torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
# )
div_term = 1 / (10000 ** ((2 * np.arange(d_model)) / d_model))
pe[:, 0::2] = torch.sin(position * div_term[0::2])
pe[:, 1::2] = torch.cos(position * div_term[1::2])
pe = pe.unsqueeze(0).transpose(0, 1) # [5000, 1, d_model],so need seq-len <= 5000
#pe.requires_grad = False
self.register_buffer('pe', pe)
def forward(self, x):
# print(self.pe[:x.size(0), :].repeat(1,x.shape[1],1).shape ,'---',x.shape)
# dimension 1 maybe inequal batchsize
return x + self.pe[:x.size(0), :].repeat(1,x.shape[1],1)
class TransAm(nn.Module):
def __init__(self,feature_size=250,num_layers=1,dropout=0.1):
super(TransAm, self).__init__()
self.model_type = 'Transformer'
self.input_embedding = nn.Linear(1,feature_size)
self.src_mask = None
self.pos_encoder = PositionalEncoding(feature_size)
self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=10, dropout=dropout)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
self.decoder = nn.Linear(feature_size,1)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self,src):
# src with shape (input_window, batch_len, 1)
if self.src_mask is None or self.src_mask.size(0) != len(src):
device = src.device
mask = self._generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
src = self.input_embedding(src) # linear transformation before positional embedding
src = self.pos_encoder(src)
output = self.transformer_encoder(src,self.src_mask)#, self.src_mask)
output = self.decoder(output)
return output
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
# if window is 100 and prediction step is 1
# in -> [0..99]
# target -> [1..100]
'''
In fact, assuming that the number of samples is N,
the length of the input sequence is m, and the backward prediction is k steps,
then length of a block [input : 1 , 2 ... m -> output : k , k+1....m+k ]
should be (m+k) : block_len, so to ensure that each block is complete,
the end element of the last block should be the end element of the entire sequence,
so the actual number of blocks is [N - block_len + 1]
'''
def create_inout_sequences(input_data, input_window ,output_window):
inout_seq = []
L = len(input_data)
block_num = L - block_len + 1
# total of [N - block_len + 1] blocks
# where block_len = input_window + output_window
for i in range( block_num ):
train_seq = input_data[i : i + input_window]
train_label = input_data[i + output_window : i + input_window + output_window]
inout_seq.append((train_seq ,train_label))
return torch.FloatTensor(np.array(inout_seq))
def get_data():
# construct a littel toy dataset
time = np.arange(0, 400, 0.1)
amplitude = np.sin(time) + np.sin(time * 0.05) + \
np.sin(time * 0.12) * np.random.normal(-0.2, 0.2, len(time))
from sklearn.preprocessing import MinMaxScaler
#loading weather data from a file
#from pandas import read_csv
#series = read_csv('daily-min-temperatures.csv', header=0, index_col=0, parse_dates=True, squeeze=True)
# looks like normalizing input values curtial for the model
scaler = MinMaxScaler(feature_range=(-1, 1))
#amplitude = scaler.fit_transform(series.to_numpy().reshape(-1, 1)).reshape(-1)
amplitude = scaler.fit_transform(amplitude.reshape(-1, 1)).reshape(-1)
sampels = int(len(time) * train_size) # use a parameter to control training size
train_data = amplitude[:sampels]
test_data = amplitude[sampels:]
# convert our train data into a pytorch train tensor
#train_tensor = torch.FloatTensor(train_data).view(-1)
train_sequence = create_inout_sequences( train_data,input_window ,output_window)
'''
train_sequence = train_sequence[:-output_window] # todo: fix hack? -> din't think this through, looks like the last n sequences are to short, so I just remove them. Hackety Hack..
# looks like maybe solved
'''
#test_data = torch.FloatTensor(test_data).view(-1)
test_data = create_inout_sequences(test_data,input_window,output_window)
'''
test_data = test_data[:-output_window] # todo: fix hack?
'''
# shape with (block , sql_len , 2 )
return train_sequence.to(device),test_data.to(device)
def get_batch(input_data, i , batch_size):
# batch_len = min(batch_size, len(input_data) - 1 - i) # # Now len-1 is not necessary
batch_len = min(batch_size, len(input_data) - i)
data = input_data[ i:i + batch_len ]
input = torch.stack([item[0] for item in data]).view((input_window,batch_len,1))
# ( seq_len, batch, 1 ) , 1 is feature size
target = torch.stack([item[1] for item in data]).view((input_window,batch_len,1))
return input, target
def train(train_data):
model.train() # Turn on the train mode \o/
total_loss = 0.
start_time = time.time()
for batch, i in enumerate(range(0, len(train_data), batch_size)): # Now len-1 is not necessary
# data and target are the same shape with (input_window,batch_len,1)
data, targets = get_batch(train_data, i , batch_size)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, targets)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.7)
optimizer.step()
total_loss += loss.item()
log_interval = int(len(train_data) / batch_size / 5)
if batch % log_interval == 0 and batch > 0:
cur_loss = total_loss / log_interval
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | '
'lr {:02.6f} | {:5.2f} ms | '
'loss {:5.5f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // batch_size, scheduler.get_lr()[0],
elapsed * 1000 / log_interval,
cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
def plot_and_loss(eval_model, data_source,epoch):
eval_model.eval()
total_loss = 0.
test_result = torch.Tensor(0)
truth = torch.Tensor(0)
with torch.no_grad():
# for i in range(0, len(data_source) - 1):
for i in range(len(data_source)): # Now len-1 is not necessary
data, target = get_batch(data_source, i , 1) # one-step forecast
output = eval_model(data)
total_loss += criterion(output, target).item()
test_result = torch.cat((test_result, output[-1].view(-1).cpu()), 0)
truth = torch.cat((truth, target[-1].view(-1).cpu()), 0)
#test_result = test_result.cpu().numpy() -> no need to detach stuff..
len(test_result)
pyplot.plot(test_result,color="red")
pyplot.plot(truth[:500],color="blue")
pyplot.plot(test_result-truth,color="green")
pyplot.grid(True, which='both')
pyplot.axhline(y=0, color='k')
pyplot.savefig('graph/transformer-epoch%d.png'%epoch)
pyplot.close()
return total_loss / i
# predict the next n steps based on the input data
def predict_future(eval_model, data_source,steps):
eval_model.eval()
total_loss = 0.
test_result = torch.Tensor(0)
truth = torch.Tensor(0)
data, _ = get_batch(data_source , 0 , 1)
with torch.no_grad():
for i in range(0, steps):
output = eval_model(data[-input_window:])
# (seq-len , batch-size , features-num)
# input : [ m,m+1,...,m+n ] -> [m+1,...,m+n+1]
data = torch.cat((data, output[-1:])) # [m,m+1,..., m+n+1]
data = data.cpu().view(-1)
# I used this plot to visualize if the model pics up any long therm structure within the data.
pyplot.plot(data,color="red")
pyplot.plot(data[:input_window],color="blue")
pyplot.grid(True, which='both')
pyplot.axhline(y=0, color='k')
pyplot.savefig('graph/transformer-future%d.png'%steps)
pyplot.show()
pyplot.close()
def evaluate(eval_model, data_source):
eval_model.eval() # Turn on the evaluation mode
total_loss = 0.
eval_batch_size = 1000
with torch.no_grad():
# for i in range(0, len(data_source) - 1, eval_batch_size): # Now len-1 is not necessary
for i in range(0, len(data_source), eval_batch_size):
data, targets = get_batch(data_source, i,eval_batch_size)
output = eval_model(data)
total_loss += len(data[0]) * criterion(output, targets).cpu().item()
return total_loss / len(data_source)
train_data, val_data = get_data()
model = TransAm().to(device)
criterion = nn.MSELoss()
lr = 0.005
#optimizer = torch.optim.SGD(model.parameters(), lr=lr)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.95)
best_val_loss = float("inf")
epochs = 10 # The number of epochs
best_model = None
for epoch in range(1, epochs + 1):
epoch_start_time = time.time()
train(train_data)
if ( epoch % 5 == 0 ):
val_loss = plot_and_loss(model, val_data,epoch)
predict_future(model, val_data,200)
else:
val_loss = evaluate(model, val_data)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.5f} | valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
val_loss, math.exp(val_loss)))
print('-' * 89)
#if val_loss < best_val_loss:
# best_val_loss = val_loss
# best_model = model
scheduler.step()
#src = torch.rand(input_window, batch_size, 1) # (source sequence length,batch size,feature number)
#out = model(src)
#
#print(out)
#print(out.shape)