-
Notifications
You must be signed in to change notification settings - Fork 15
/
train.py
189 lines (146 loc) · 5.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""Simulate Federated Learning Training
This script allows to simulate federated learning; the experiment name, the method and be precised along side with the
hyper-parameters of the experiment.
The results of the experiment (i.e., training logs) are written to ./logs/ folder.
This file can also be imported as a module and contains the following function:
* train - simulate federated learning training
"""
from utils.utils import *
from utils.constants import *
from utils.args import TrainArgumentsManager
from torch.utils.tensorboard import SummaryWriter
def init_clients(args_, data_dir, logs_dir, chkpts_dir):
"""
initialize clients from data folders
:param args_:
:param data_dir: path to directory containing data folders
:param logs_dir: directory to save the logs
:param chkpts_dir: directory to save chkpts
:return: List[Client]
"""
os.makedirs(chkpts_dir, exist_ok=True)
print("===> Building data iterators..")
train_iterators, val_iterators, test_iterators = \
get_loaders(
type_=LOADER_TYPE[args_.experiment],
data_dir=data_dir,
batch_size=args_.bz,
is_validation=args_.validation
)
print("===> Initializing clients..")
clients_ = []
for task_id, (train_iterator, val_iterator, test_iterator) in \
enumerate(tqdm(zip(train_iterators, val_iterators, test_iterators), total=len(train_iterators))):
if train_iterator is None or test_iterator is None:
continue
learner =\
get_learner(
name=args_.experiment,
model_name=args_.model_name,
device=args_.device,
optimizer_name=args_.optimizer,
scheduler_name=args_.lr_scheduler,
initial_lr=args_.lr,
n_rounds=args_.n_rounds,
seed=args_.seed,
input_dimension=args_.input_dimension,
hidden_dimension=args_.hidden_dimension,
mu=args_.mu
)
logs_path = os.path.join(logs_dir, "task_{}".format(task_id))
os.makedirs(logs_path, exist_ok=True)
logger = SummaryWriter(logs_path)
client = get_client(
client_type=args_.client_type,
learner=learner,
train_iterator=train_iterator,
val_iterator=val_iterator,
test_iterator=test_iterator,
logger=logger,
local_steps=args_.local_steps,
client_id=task_id,
save_path=os.path.join(chkpts_dir, "task_{}.pt".format(task_id))
)
clients_.append(client)
return clients_
def run_experiment(arguments_manager_):
"""
:param arguments_manager_:
:type arguments_manager_: ArgumentsManager
"""
if not arguments_manager_.initialized:
arguments_manager_.parse_arguments()
args_ = arguments_manager_.args
torch.manual_seed(args_.seed)
data_dir = get_data_dir(args_.experiment)
if "logs_dir" in args_:
logs_dir = args_.logs_dir
else:
logs_dir = os.path.join("logs", arguments_manager_.args_to_string())
if "chkpts_dir" in args_:
chkpts_dir = args_.chkpts_dir
else:
chkpts_dir = os.path.join("chkpts", arguments_manager_.args_to_string())
print("==> Clients initialization..")
clients = \
init_clients(
args_,
data_dir=os.path.join(data_dir, "train"),
logs_dir=os.path.join(logs_dir, "train"),
chkpts_dir=os.path.join(chkpts_dir, "train")
)
print("==> Test Clients initialization..")
test_clients = \
init_clients(
args_,
data_dir=os.path.join(data_dir, "test"),
logs_dir=os.path.join(logs_dir, "test"),
chkpts_dir=os.path.join(chkpts_dir, "test")
)
logs_path = os.path.join(logs_dir, "train", "global")
os.makedirs(logs_path, exist_ok=True)
global_train_logger = SummaryWriter(logs_path)
logs_path = os.path.join(logs_dir, "test", "global")
os.makedirs(logs_path, exist_ok=True)
global_test_logger = SummaryWriter(logs_path)
global_learner = \
get_learner(
name=args_.experiment,
model_name=args_.model_name,
device=args_.device,
optimizer_name=args_.optimizer,
scheduler_name=args_.lr_scheduler,
initial_lr=args_.lr,
n_rounds=args_.n_rounds,
seed=args_.seed,
mu=args_.mu,
input_dimension=args_.input_dimension,
hidden_dimension=args_.hidden_dimension
)
aggregator = \
get_aggregator(
aggregator_type=args_.aggregator_type,
clients=clients,
global_learner=global_learner,
sampling_rate=args_.sampling_rate,
log_freq=args_.log_freq,
global_train_logger=global_train_logger,
global_test_logger=global_test_logger,
test_clients=test_clients,
verbose=args_.verbose,
seed=args_.seed
)
aggregator.write_logs()
print("Training..")
for ii in tqdm(range(args_.n_rounds)):
aggregator.mix()
if (ii % args_.log_freq) == (args_.log_freq - 1):
aggregator.save_state(chkpts_dir)
aggregator.write_logs()
aggregator.save_state(chkpts_dir)
if __name__ == "__main__":
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
arguments_manager = TrainArgumentsManager()
arguments_manager.parse_arguments()
run_experiment(arguments_manager)