-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathregion_based.py
211 lines (166 loc) · 9.21 KB
/
region_based.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
# suppress partial model loading warning
logging.set_verbosity_error()
import torch
import torch.nn as nn
import torchvision.transforms as T
import argparse
import numpy as np
from PIL import Image
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = True
def get_views(panorama_height, panorama_width, window_size=64, stride=8):
panorama_height /= 8
panorama_width /= 8
num_blocks_height = (panorama_height - window_size) // stride + 1
num_blocks_width = (panorama_width - window_size) // stride + 1
total_num_blocks = int(num_blocks_height * num_blocks_width)
views = []
for i in range(total_num_blocks):
h_start = int((i // num_blocks_width) * stride)
h_end = h_start + window_size
w_start = int((i % num_blocks_width) * stride)
w_end = w_start + window_size
views.append((h_start, h_end, w_start, w_end))
return views
class MultiDiffusion(nn.Module):
def __init__(self, device, sd_version='2.0', hf_key=None):
super().__init__()
self.device = device
self.sd_version = sd_version
print(f'[INFO] loading stable diffusion...')
if hf_key is not None:
print(f'[INFO] using hugging face custom model key: {hf_key}')
model_key = hf_key
elif self.sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif self.sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif self.sd_version == '1.5':
model_key = "runwayml/stable-diffusion-v1-5"
else:
model_key = self.sd_version #For custom models or fine-tunes, allow people to use arbitrary versions
#raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
# Create model
self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae").to(self.device)
self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder").to(self.device)
self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet").to(self.device)
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
print(f'[INFO] loaded stable diffusion!')
@torch.no_grad()
def get_random_background(self, n_samples):
# sample random background with a constant rgb value
backgrounds = torch.rand(n_samples, 3, device=self.device)[:, :, None, None].repeat(1, 1, 512, 512)
return torch.cat([self.encode_imgs(bg.unsqueeze(0)) for bg in backgrounds])
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt):
# Tokenize text and get embeddings
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def encode_imgs(self, imgs):
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.sample() * 0.18215
return latents
@torch.no_grad()
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
@torch.no_grad()
def generate(self, masks, prompts, negative_prompts='', height=512, width=2048, num_inference_steps=50,
guidance_scale=7.5, bootstrapping=20):
# get bootstrapping backgrounds
# can move this outside of the function to speed up generation. i.e., calculate in init
bootstrapping_backgrounds = self.get_random_background(bootstrapping)
# Prompts -> text embeds
text_embeds = self.get_text_embeds(prompts, negative_prompts) # [2 * len(prompts), 77, 768]
# Define panorama grid and get views
latent = torch.randn((1, self.unet.in_channels, height // 8, width // 8), device=self.device)
noise = latent.clone().repeat(len(prompts) - 1, 1, 1, 1)
views = get_views(height, width)
count = torch.zeros_like(latent)
value = torch.zeros_like(latent)
self.scheduler.set_timesteps(num_inference_steps)
with torch.autocast('cuda'):
for i, t in enumerate(self.scheduler.timesteps):
count.zero_()
value.zero_()
for h_start, h_end, w_start, w_end in views:
masks_view = masks[:, :, h_start:h_end, w_start:w_end]
latent_view = latent[:, :, h_start:h_end, w_start:w_end].repeat(len(prompts), 1, 1, 1)
if i < bootstrapping:
bg = bootstrapping_backgrounds[torch.randint(0, bootstrapping, (len(prompts) - 1,))]
bg = self.scheduler.add_noise(bg, noise[:, :, h_start:h_end, w_start:w_end], t)
latent_view[1:] = latent_view[1:] * masks_view[1:] + bg * (1 - masks_view[1:])
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latent_view] * 2)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds)['sample']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the denoising step with the reference model
latents_view_denoised = self.scheduler.step(noise_pred, t, latent_view)['prev_sample']
value[:, :, h_start:h_end, w_start:w_end] += (latents_view_denoised * masks_view).sum(dim=0,
keepdims=True)
count[:, :, h_start:h_end, w_start:w_end] += masks_view.sum(dim=0, keepdims=True)
# take the MultiDiffusion step
latent = torch.where(count > 0, value / count, value)
# Img latents -> imgs
imgs = self.decode_latents(latent) # [1, 3, 512, 512]
img = T.ToPILImage()(imgs[0].cpu())
return img
def preprocess_mask(mask_path, h, w, device):
mask = np.array(Image.open(mask_path).convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask).to(device)
mask = torch.nn.functional.interpolate(mask, size=(h, w), mode='nearest')
return mask
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mask_paths', type=list)
# important: it is necessary that SD output high-quality images for the bg/fg prompts.
parser.add_argument('--bg_prompt', type=str)
parser.add_argument('--bg_negative', type=str) # 'artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image'
parser.add_argument('--fg_prompts', type=list)
parser.add_argument('--fg_negative', type=list) # 'artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image'
parser.add_argument('--sd_version', type=str, default='2.0', choices=['1.5', '2.0'],
help="stable diffusion version")
parser.add_argument('--H', type=int, default=768)
parser.add_argument('--W', type=int, default=512)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--steps', type=int, default=50)
# bootstrapping encourages high fidelity to tight masks, the value can be lowered is most cases
parser.add_argument('--bootstrapping', type=int, default=20)
opt = parser.parse_args()
seed_everything(opt.seed)
device = torch.device('cuda')
sd = MultiDiffusion(device, opt.sd_version)
fg_masks = torch.cat([preprocess_mask(mask_path, opt.H // 8, opt.W // 8, device) for mask_path in opt.mask_paths])
bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True)
bg_mask[bg_mask < 0] = 0
masks = torch.cat([bg_mask, fg_masks])
prompts = [opt.bg_prompt] + opt.fg_prompts
neg_prompts = [opt.bg_negative] + opt.fg_negative
img = sd.generate(masks, prompts, neg_prompts, opt.H, opt.W, opt.steps, bootstrapping=opt.bootstrapping)
# save image
img.save('out.png')