-
Notifications
You must be signed in to change notification settings - Fork 0
/
01_descriptives_parts_a_b.Rmd
596 lines (355 loc) · 13.7 KB
/
01_descriptives_parts_a_b.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
---
title: "Survey Results Task 3.3 731951"
author: "Anja Rainer"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
html_document:
keep_md: true
editor_options:
chunk_output_type: inline
---
```{r setup, include=FALSE}
library(tidyverse)
library(patchwork)
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, dpi = 300)
df <- tar_read(with_countries)
question_codes <- tar_read(var_overview)
```
```{r remove non consenters}
# number of cases:
nrow(df)
```
Our sample is based on `r nrow(df)` cases.
# Missing data
```{r, results="asis"}
library(visdat)
vis_dat(df)
visdat::vis_miss(df)
```
```{r, fig.width=12}
df %>%
select_if(function(x) (sum(is.na(x)))/length(x) > .1) %>%
vis_miss()
```
# Demographics
# Countries
In which country do you work? [drop-down/ open text]
```{r e1, fig.width=8, fig.height=4}
e1_rec_df <- df %>%
select("E1_rec")
e1_rec_df %>%
mutate(E1_rec = forcats::fct_lump_min(E1_rec, min = 4, other_level = "Other")) %>%
plot_bar(E1_rec, title = "Countries", reorder = TRUE, nudge_y = .03)
```
# Gender
Please select the gender category that best describes you
```{r e2, fig.width=6, fig.height=3}
answer_levels_e2 <- c("Man", "Woman", "Prefer not to say", "Other")
e2_df <- df %>%
select("E2")
e2_df_rec <- e2_df %>%
mutate(across(.fns = factor, levels = answer_levels_e2))
e2_df_rec %>%
plot_bar(E2, title = "Gender", reorder = TRUE, nudge_y = .079)
```
# Age cohorts
What is your age?
```{r e3, fig.width=7, fig.height=3.5}
answer_levels_e3 <- c("<20", "20-29", "30-39", "40-49", "50-59", "60-69", "70+")
e3_df <- df %>%
select("E3")
e3_df_rec <- e3_df %>%
mutate(across(.fns = factor, levels = answer_levels_e3))
e3_df_rec %>%
mutate(across(.fns = as.numeric)) %>%
summarise(across(everything(), ~mean(.x, na.rm = TRUE)))
e3_df_rec %>%
plot_bar(E3, title = "Age cohorts", reorder = FALSE, nudge_y = .028)
```
# Publish first academic publication
When did you publish your first academic publication (journal article, book, chapter, conference proceeding, or similar)? Please tell us the year.
```{r e3b, fig.width=6, fig.height=3}
e3b_df <- df %>%
select("E3b") %>%
filter(E3b > 1960)
e3b_df %>%
ggplot(aes(E3b)) +
geom_histogram() +
labs(x = NULL, y = NULL, title = NULL) +
hrbrthemes::theme_ipsum(base_family = "Hind")
```
# Highest education
What is the highest education level you completed? [drop down]
```{r e4, fig.width=6, fig.height=3}
answer_levels_e4 <- c("Post-secondary non-tertiary education (e.g. VET Schools, schools of healthcare and nursing)", "Short-cycle tertiary education (e.g. master schools, colleges, vocational training schools)", "Bachelor or equivalent", "Master or equivalent", "Doctorate or equivalent", "Other")
answer_labels_e4 <- str_wrap(answer_levels_e4, 30)
e4_df <- df %>%
select("E4")
e4_df_rec <- e4_df %>%
mutate(across(.fns = factor, levels = answer_levels_e4,
labels = answer_labels_e4))
e4_df_rec %>%
plot_bar(E4, title = "Highest education", reorder = FALSE, nudge_y = .2) +
scale_y_continuous(breaks = c(0, .25, .5, .75, 1),
labels = function(x) scales::percent(x, accuracy = 1))
```
# Types of institution
In what type of institution do you work? [drop down]
```{r e5, fig.width=7, fig.height=3}
answer_levels_e5 <- c("University", "Public research institute", "Private research institute", "Company", "Nonprofit", "Other")
e5_df <- df %>%
select("E5")
e5_df_rec <- e5_df %>%
mutate(across(.fns = factor, levels = answer_levels_e5))
e5_df_rec %>%
plot_bar(E5, title = "Types of institution", reorder = TRUE, nudge_y = .13)
```
# Position
What is your position? Choose all that apply
```{r e6, fig.width=8, fig.height=5}
answer_levels_e6 <- c("Junior Researcher", "Senior Researcher", "Ph.D. student", "Postdoctoral fellow/ researcher", "Assistant professor",
"Associate professor", "Full professor", "Associate research scientist", "Instructor", "Lecturer", "Adjunct professor",
"Technician or lab manager", "Core facility manager", "Other")
e6_df <- df %>%
select("E6")
e6_df_rec <- e6_df %>%
mutate(across(.fns = factor, levels = answer_levels_e6))
e6_df_rec %>%
plot_bar(E6, title = "Position", reorder = TRUE, nudge_y = .035)
```
# Respondents by disciplines
In which general area of knowledge do you work?
```{r e7, fig.width=8, fig.height=3}
answer_levels_e7 <- c("Natural Sciences", "Engineering and technology", "Medical and health sciences", "Agricultural and Veterinary sciences",
"Social Sciences", "Humanities and the Arts")
e7_df <- df %>%
select("E7")
e7_df_rec <- e7_df %>%
mutate(across(.fns = factor, levels = answer_levels_e7))
e7_df_rec %>%
plot_bar(E7, title = "Respondents by disciplines", reorder = TRUE, nudge_y = .055)
```
# A1 Practices in OS
Please rate the following statements according to your practices regarding Open Science
```{r a1, fig.width=8, fig.height=4.5, results="asis"}
answer_levels <- c("Strongly disagree", "Disagree", "Neither agree nor disagree",
"Agree", "Strongly agree",
"This topic is not relevant to my research",
"Don’t know/ Don’t have enough information")
a1_df <- df %>%
select(starts_with("A1["))
a1_df_rec <- a1_df %>%
mutate(across(.fns = factor, levels = answer_levels))
recode_successful(a1_df, a1_df_rec)
visdat::vis_miss(a1_df_rec)
a1_df_rec %>%
plot_likert()
```
# A2 Own practices regarding Open Access publishing
Please rate the following statements according to your own practices regarding Open Access publishing.
```{r a2, fig.width=8, fig.height=4.5, results="asis"}
answer_levels_2 <- c("Never", "Rarely", "Sometimes",
"Often", "Always", "This topic is not relevant to my research",
"Don’t know/ Don’t have enough information")
a2_df <- df %>%
select(starts_with("A2["))
a2_df_rec <- a2_df %>%
mutate(across(.fns = factor, levels = answer_levels_2))
a2_df_rec %>%
plot_likert(legend_rows = 1)
```
# A3 Own practices regarding Research Data Management
Please rate the following statements according to your own practices regarding Research Data Management.
```{r a3, fig.width=8, fig.height=4.5, results="asis"}
a3_df <- df %>%
select(starts_with("A3["))
a3_df_rec <- a3_df %>%
mutate(across(.fns = factor, levels = answer_levels_2))
a3_df_rec %>%
plot_likert(legend_rows = 1)
```
# A4 Practices regarding Reproducible Research
Please rate the following statements according to your practices regarding Reproducible Research
```{r a4, fig.width=8, fig.height=4.5, results="asis"}
a4_df <- df %>%
select(starts_with("A4["))
a4_df_rec <- a4_df %>%
mutate(across(.fns = factor, levels = answer_levels_2))
a4_df_rec %>%
plot_likert(legend_rows = 1)
```
# A5 Practices regarding Open Peer Review
Please rate the following statements according to your practices regarding Open Peer Review.
```{r a5, fig.width=8, fig.height=4.5, results="asis"}
answer_levels <- c("Strongly disagree", "Disagree", "Neither agree nor disagree",
"Agree", "Strongly agree",
"This topic is not relevant to my research",
"Don’t know/ Don’t have enough information")
a5_df <- df %>%
select(starts_with("A5["))
a5_df_rec <- a5_df %>%
mutate(across(.fns = factor, levels = answer_levels))
a5_df_rec %>%
plot_likert()
```
# A6 Practices regarding Open Source Software
Please rate the following statements according to your practices regarding Open Source Software.
```{r a6, fig.width=8, fig.height=4.5, results="asis"}
a6_df <- df %>%
select(starts_with("A6["))
a6_df_rec <- a6_df %>%
mutate(across(.fns = factor, levels = answer_levels_2))
a6_df_rec %>%
plot_likert(legend_rows = 1)
```
# A7 Practices regarding Licensing
Please rate the following statements according to your practices regarding Licensing.
```{r a7, fig.width=8, fig.height=4.5, results="asis"}
a7_df <- df %>%
select(starts_with("A7["))
a7_df_rec <- a7_df %>%
mutate(across(.fns = factor, levels = answer_levels))
a7_df_rec %>%
plot_likert()
```
# A8 Practices regarding Research Integrity
Please rate the following statements according to your practices regarding Research Integrity
```{r a8, fig.width=8, fig.height=4.5, results="asis"}
a8_df <- df %>%
select(starts_with("A8["))
a8_df_rec <- a8_df %>%
mutate(across(.fns = factor, levels = answer_levels_2))
a8_df_rec %>%
plot_likert(legend_rows = 1)
```
# A9 Practices regarding Citizen Science (information, consultation, public participation)
Please rate the following statements according to your practices regarding Citizen Science - consider all levels -information, consultation, public participation
```{r a9, fig.width=8, fig.height=4.5, results="asis"}
a9_df <- df %>%
select(starts_with("A9["))
a9_df_rec <- a9_df %>%
mutate(across(.fns = factor, levels = answer_levels))
a9_df_rec %>%
plot_likert()
```
# A10 Practices regarding Gender Issues
Please rate the following statements according to your practices regarding Gender issues
```{r a10, fig.width=8, fig.height=4.5, results="asis"}
a10_df <- df %>%
select(starts_with("A10["))
a10_df_rec <- a10_df %>%
mutate(across(.fns = factor, levels = answer_levels))
a10_df_rec %>%
plot_likert()
```
# Part B Training on OS topics
# B1 Attended Training Events
How many training events have you attended in these topics?
```{r b1, fig.height=5, fig.width=7, results="asis"}
answer_levels_b1 <- c("None", "1", "2", "3-5", "more than 5")
b1_df <- df %>%
select(starts_with("B1["))
b1_df_rec <- b1_df %>%
mutate(across(.fns = factor, levels = answer_levels_b1))
b1_df_rec %>%
plot_likert(center_for_likert = 1.5, legend_rows = 1)
```
# B3 Attended Different Types of Training Sessions
How often did you attend the following types of training sessions?
```{r b3, fig.width=7, fig.height=5, results="asis"}
answer_levels_b3 <- c("Never", "Once", "More than once")
b3_df <- df %>%
select(starts_with("B3["))
b3_df_rec <- b3_df %>%
mutate(across(.fns = factor, levels = answer_levels_b3))
b3_df_rec %>%
plot_likert(center_for_likert = 1.5, legend_rows = 1)
```
# B5 Hours of training
How many hours of training in total did you get?
```{r b5, fig.width=6, fig.height=3, results="asis"}
# answer_levels_b5 <- c("None", "1", "2", "3-5", "More than 5", "Other")
# # remove "none" category, since these people did not receive training at all
answer_levels_b5 <- c("1", "2", "3-5", "More than 5")
b5_df <- df %>%
select("B5")
b5_df_rec <- b5_df %>%
mutate(across(.fns = factor, levels = answer_levels_b5))
recode_successful(b5_df, b5_df_rec)
b5_df_rec %>%
plot_bar(B5, title = "Hours of training", reorder = FALSE, nudge_y = .09)
```
# B6 Attended Different Types of Training Sessions
Did the training you receive fulfill your needs?
```{r b6, fig.width=7, fig.height=5, results="asis"}
answer_levels_b6 <- c("I didn’t receive training",
"I received adequate training",
"I need more training")
b6_df <- df %>%
select(starts_with("B6["))
b6_df_rec <- b6_df %>%
mutate(across(.fns = factor, levels = answer_levels_b6))
b6_df_rec %>%
plot_likert(legend_rows = 1, centered = FALSE)
```
# B8 Attendance of first formal training in any Open Science topic
When did you attend your first formal training in any Open Science topic?
```{r b8, fig.width=5.5, fig.height=3, results="asis"}
answer_levels_b8 <- c("During doctoral studies", "As a researcher", "During a conference", "Other")
b8_df <- df %>%
select("B8")
b8_df_rec <- b8_df %>%
mutate(across(.fns = factor, levels = answer_levels_b8))
b8_df_rec %>%
filter(B8 != "Other") %>%
plot_bar(B8, title = "Attendance of first formal training in any Open Science topic", reorder = FALSE, nudge_y = .15)
```
Most responses from the "Other" category mention that they never received any
training.
# B9 Provider of attended training sessions
Who provided the training sessions you attended? (choose all that apply)
```{r b9, fig.width=8, fig.height=5.7, results="asis"}
answer_levels_3 <- c("No", "Yes")
b9_df <- df %>%
select(starts_with("B9["))
b9_df_rec <- b9_df %>%
mutate(across(.fns = factor, levels = answer_levels_3))
b9_df_rec %>%
plot_likert(legend_rows = 1)
```
# B10 Preferred way to learn OS topics
What is your preferred way to learn open science topics? (choose all that apply)
```{r b10, fig.width=8, fig.height=4.5, results="asis"}
b10_df <- df %>%
select(starts_with("B10["))
b10_df_rec <- b10_df %>%
mutate(across(.fns = factor, levels = answer_levels_3))
b10_df_rec %>%
plot_likert(legend_rows = 1)
```
# B11 Has your awareness of open science practices increased after the training you attended?
Has your awareness of open science practices increased after the training you attended?
```{r b11, fig.width=8, fig.height=4, results="asis"}
answer_levels_4 <- c("Highly disagree", "Disagree",
"Neither agree nor disagree",
"Agree", "Highly agree")
b11_df <- df %>%
select(starts_with("B11["))
b11_df_rec <- b11_df %>%
mutate(across(.fns = factor, levels = answer_levels_4))
recode_successful(b11_df, b11_df_rec)
b11_df_rec %>%
plot_likert()
```
# B12 Share experience OS practices/tool with colleagues
Would you share your experience with open science practices and tools with colleagues?
```{r b12, fig.width=8, fig.height=4, results="asis"}
b12_df <- df %>%
select(starts_with("B12["))
b12_df_rec <- b12_df %>%
mutate(across(.fns = factor, levels = answer_levels_4))
b12_df_rec %>%
plot_likert()
```
# Further todos
- check out cases with weird first year of publication `df %>% filter(id %in% c(356, 420, 129))`