-
Notifications
You must be signed in to change notification settings - Fork 4
/
BROADCAST_npz_sens.py
executable file
·2229 lines (1863 loc) · 96.4 KB
/
BROADCAST_npz_sens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
'''
File: Toy2D.py
Created on 21 january 2021
@author: Cedric Content
@contact: [email protected]
@organization: ONERA - DAAA
@summary: This file is the main file of the program. It contains the
routine "main" and other related routines.
'''
import srcfv.f_geom as f_geom
import srcfv.f_bnd as f_bnd
import srcfv.f_sch as f_sch
import srcfv.f_lhs as f_lhs
import srcfv.f_lin as f_lin
# import srcfv.f_adj as f_adj
import srcfv.f_norm as f_norm
# FROM A.POULAIN Thesis
import misc.f_misc as f_misc
import misc.PETSc_func as pet
import resolvent_all as resol
import SIM
import SIM.BLprofiles_implicit as blsim
import f_init
import meshBL as mesh
import numpy as _np
import matplotlib.pyplot as plt
import srcfv.f_dz as f_dz
import srcfv.f_hess as f_hess
import srcfv.f_lindz as f_lindz
import srcfv.f_chu as f_chu
import srcfv.f_linchu as f_linchu
import os
import sys
import timeit
# import Converter.Internal as I
# import Converter.PyTree as C
# import CGNS.MAP as cgm
from mpi4py import MPI
######################### Private functions ####################
def __writestate_node(filename, im, jm, w, x0, y0, gh) :
# print 'write file'
f_out = open(filename , 'w')
f_out.write('TITLE="state"\n')
f_out.write('VARIABLES= "X" "Y" "ro" "rou" "rov" "row" "roe" \n')
f_out.write('ZONE I = ' + str(im) + ', J = ' + str(jm) + '\n')
for j in range(gh,jm+gh):
for i in range(gh,im+gh):
ro = 0.25*(w[i-1,j-1,0] + w[i,j-1,0] + w[i-1,j,0] + w[i,j,0])
rou = 0.25*(w[i-1,j-1,1] + w[i,j-1,1] + w[i-1,j,1] + w[i,j,1])
rov = 0.25*(w[i-1,j-1,2] + w[i,j-1,2] + w[i-1,j,2] + w[i,j,2])
row = 0.25*(w[i-1,j-1,3] + w[i,j-1,3] + w[i-1,j,3] + w[i,j,3])
roe = 0.25*(w[i-1,j-1,4] + w[i,j-1,4] + w[i-1,j,4] + w[i,j,4])
f_out.write(str(x0[i,j]) + ' ' + str(y0[i,j]) + ' ' +
str(ro) + ' ' + str(rou) + ' ' +
str(rov) + ' ' + str(row) + ' ' +
str(roe) + '\n')
f_out.close()
def __writestate_center(filename, im, jm, w, xc, yc, gh) :
# print 'write file'
f_out = open(filename , 'w')
f_out.write('TITLE="state"\n')
f_out.write('VARIABLES= "X" "Y" "ro" "rou" "rov" "row" "roe" \n')
f_out.write('ZONE I = ' + str(im) + ', J = ' + str(jm) + '\n')
for j in range(gh,jm+gh):
for i in range(gh,im+gh):
ro = w[i,j,0]
rou = w[i,j,1]
rov = w[i,j,2]
row = w[i,j,3]
roe = w[i,j,4]
f_out.write(str(xc[i,j]) + ' ' + str(yc[i,j]) + ' ' +
str(ro) + ' ' + str(rou) + ' ' +
str(rov) + ' ' + str(row) + ' ' +
str(roe) + '\n')
f_out.close()
def __writestate_center_gh(filename, imloc, jmloc, w, xc, yc) :
# print 'write file'
f_out = open(filename , 'w')
f_out.write('TITLE="state"\n')
f_out.write('VARIABLES= "X" "Y" "ro" "rou" "rov" "row" "roe" \n')
f_out.write('ZONE I = ' + str(imloc) + ', J = ' + str(jmloc) + '\n')
for j in range(jmloc):
for i in range(imloc):
ro = w[i,j,0]
rou = w[i,j,1]
rov = w[i,j,2]
row = w[i,j,3]
roe = w[i,j,4]
f_out.write(str(xc[i,j]) + ' ' + str(yc[i,j]) + ' ' +
str(ro) + ' ' + str(rou) + ' ' +
str(rov) + ' ' + str(row) + ' ' +
str(roe) + '\n')
f_out.close()
def __writeline(filename, imloc, w, xc,jloc) :
# print 'write file'
f_out = open(filename , 'w')
f_out.write('TITLE="state"\n')
f_out.write('VARIABLES= "X" "ro" "rou" "rov" "row" "roe" \n')
f_out.write('ZONE I = ' + str(imloc) + '\n')
for i in range(imloc):
ro = w[i,0]
rou = w[i,1]
rov = w[i,2]
row = w[i,3]
roe = w[i,4]
f_out.write(str(xc[i,jloc]) + ' ' +
str(ro) + ' ' + str(rou) + ' ' +
str(rov) + ' ' + str(row) + ' ' +
str(roe) + '\n')
f_out.close()
def __comp_Sutherland(propref, Ts, Cs, T):
'''Dynamical viscosity / thermal conductivity from sutherland law'''
return propref*_np.sqrt(T/Ts)*((1.+Cs/Ts)/(1.+Cs/T))
def __compute_tot_energy_inf(R_pg, gamma, t_inf, v_inf):
'''Total energy E = R/(gamma-1)*Tinf+(uinf**2)/2'''
return R_pg/(gamma-1.)*t_inf+0.5*v_inf*v_inf
def remove_zero_jac(IA, JA, Jac, mini=2.e-16):
''' Remove the zero components from the Jac list in order not to store any zero in the sparse matrix '''
to_keep = _np.absolute(Jac) > mini
Jac = Jac[to_keep,...]
IA = IA[to_keep,...]
JA = JA[to_keep,...]
return IA, JA, Jac
def centers_array(A):
''' Compute the values of an array A at the centers'''
return 0.25 * ( A[:-1,:-1] + A[1:,:-1] + A[:-1,1:] + A[1:,1:] )
def writeCGNS(filename, im, jm, gh, w, x0, y0, vol, volf, nx, ny, xc, yc, field, wbd, res, sch, k2, k4, interf1, interf2, interf3, interf4, lf, cp, cv, gam, cs, tref, muref, rgaz, mach, prandtl, pinf=None):
''' Write the data in a CGNS tree '''
I.__FlowSolutionCenters__ = 'FlowSolution#Centers'
w0 = _np.array(w, copy=True)
res0 = _np.array(res, copy=True)
t=I.newCGNSTree()
b=I.newCGNSBase(name='Base',parent=t)
# z=I.newZone(name="Zone1",parent=b,zsize=[[(im+1)*(jm+1),im*jm, 0]])
z=I.newZone(name="Zone1",parent=b,zsize=[[(im+1)*(jm+1),im*jm,0]])
Gc=I.newGridCoordinates(parent=z)
I.newDataArray(name="CoordinateX",value=x0[:,:],parent=Gc)
I.newDataArray(name="CoordinateY",value=y0[:,:],parent=Gc)
# I.newDataArray(name="CoordinateZ",value=y0*0,parent=Gc)
Geom = I.newDiscreteData(name="Geometry", parent=z)
I.newDataArray(name="Volume",value=vol,parent=Geom)
I.newDataArray(name="VolumeInv",value=volf,parent=Geom)
I.newDataArray(name="NormalX",value=nx,parent=Geom)
I.newDataArray(name="NormalY",value=ny,parent=Geom)
I.newDataArray(name="DimX",value=im,parent=Geom)
I.newDataArray(name="DimY",value=jm,parent=Geom)
I.newDataArray(name="GhostCell",value=gh,parent=Geom)
I.newDataArray(name="CoordinateCenterX",value=xc[:,:],parent=Geom)
I.newDataArray(name="CoordinateCenterY",value=yc[:,:],parent=Geom)
# Fs=I.newFlowSolution(name="FlowSolution#Init", gridLocation='CellCenter', parent=z)
# # I.newGridLocation(value='CellCenter', parent=Fs)
# I.newDataArray(name="Density",value=w0[gh:-gh,gh:-gh,0],parent=Fs)
# I.newDataArray(name="MomentumX",value=w0[gh:-gh,gh:-gh,1],parent=Fs)
# I.newDataArray(name="MomentumY",value=w0[gh:-gh,gh:-gh,2],parent=Fs)
# I.newDataArray(name="MomentumZ",value=w0[gh:-gh,gh:-gh,3],parent=Fs)
# I.newDataArray(name="EnergyStagnationDensity",value=w0[gh:-gh,gh:-gh,4],parent=Fs)
# Res = I.newDiscreteData(name="Residual#Init", parent=z)
# I.newGridLocation(value='CellCenter', parent=Res)
# I.newDataArray(name="ResidualDensity",value=res0[gh:-gh,gh:-gh,0],parent=Res)
# I.newDataArray(name="ResidualMomentumX",value=res0[gh:-gh,gh:-gh,1],parent=Res)
# I.newDataArray(name="ResidualMomentumY",value=res0[gh:-gh,gh:-gh,2],parent=Res)
# I.newDataArray(name="ResidualMomentumZ",value=res0[gh:-gh,gh:-gh,3],parent=Res)
# I.newDataArray(name="ResidualEnergyStagnationDensity",value=res0[gh:-gh,gh:-gh,4],parent=Res)
## With Ghost cells
Fs=I.newFlowSolution(name="FlowSolution#Init", gridLocation='CellCenter', parent=z)
# I.newGridLocation(value='CellCenter', parent=Fs)
I.newDataArray(name="Density",value=w0[:,:,0],parent=Fs)
I.newDataArray(name="MomentumX",value=w0[:,:,1],parent=Fs)
I.newDataArray(name="MomentumY",value=w0[:,:,2],parent=Fs)
I.newDataArray(name="MomentumZ",value=w0[:,:,3],parent=Fs)
I.newDataArray(name="EnergyStagnationDensity",value=w0[:,:,4],parent=Fs)
Res = I.newDiscreteData(name="Residual#Init", parent=z)
I.newGridLocation(value='CellCenter', parent=Res)
I.newDataArray(name="ResidualDensity",value=res0[:,:,0],parent=Res)
I.newDataArray(name="ResidualMomentumX",value=res0[:,:,1],parent=Res)
I.newDataArray(name="ResidualMomentumY",value=res0[:,:,2],parent=Res)
I.newDataArray(name="ResidualMomentumZ",value=res0[:,:,3],parent=Res)
I.newDataArray(name="ResidualEnergyStagnationDensity",value=res0[:,:,4],parent=Res)
routinein = lf[0]
routineout = lf[1]
routinenr = lf[2]
routinew = lf[3]
routinesch = lf[4]
libbnd = lf[5]
libsch = lf[6]
BC = I.newZoneBC(parent=z)
BCin = I.newBC(name="Inflow",parent=BC, btype="FamilySpecified", family=libbnd + "." + routinein)
I.newGridLocation(value='CellCenter', parent=BCin)
I.newPointRange(name="PointRange",value=[interf1[0,0], interf1[1,0], interf1[0,1], interf1[1,1]],parent=BCin)
I.newDataArray(name="Field",value=field,parent=BCin)
BCout = I.newBC(name="Outflow",parent=BC, btype="FamilySpecified", family=libbnd + "." + routineout)
I.newGridLocation(value='CellCenter', parent=BCout)
I.newPointRange(name="PointRange",value=[interf2[0,0], interf2[1,0], interf2[0,1], interf2[1,1]],parent=BCout)
I.newDataArray(name="Pref",value=pinf,parent=BCout)
BCwall = I.newBC(name="Wall",parent=BC, btype="FamilySpecified", family=libbnd + "." + routinew)
I.newGridLocation(value='CellCenter', parent=BCwall)
I.newPointRange(name="PointRange",value=[interf3[0,0], interf3[1,0], interf3[0,1], interf3[1,1]],parent=BCwall)
BCtop = I.newBC(name="NoRef",parent=BC, btype="FamilySpecified", family=libbnd + "." + routinenr)
I.newGridLocation(value='CellCenter', parent=BCtop)
I.newPointRange(name="PointRange",value=[interf4[0,0], interf4[1,0], interf4[0,1], interf4[1,1]],parent=BCtop)
I.newDataArray(name="Wbd",value=wbd,parent=BCtop)
Num = I.newIntegralData(name="NumericalScheme", parent=b)
I.newDataArray(name="SchemeType",value=sch,parent=Num)
I.newDataArray(name="Scheme",value=libsch + "." + routinesch,parent=Num)
# I.newFamily(name=libsch + "." + routinesch,parent=Num)
I.newDataArray(name="k2",value=k2,parent=Num)
I.newDataArray(name="k4",value=k4,parent=Num)
C._addState(b, 'Mach', mach)
C._addState(b, 'Prandtl', prandtl)
C._addState(b, 'Rgaz', rgaz)
C._addState(b, 'Cp', cp)
C._addState(b, 'Cv', cv)
C._addState(b, 'Gamma', gam)
C._addState(b, 'TemperatureSutherland', cs)
C._addState(b, 'TemperatureRefSutherland', tref)
C._addState(b, 'ViscosityRefSutherland', muref)
C.convertPyTree2File(t, filename+'.hdf')
return t
def writeNPZ(filename, im, jm, gh, w, x0, y0, vol, volf, nx, ny, xc, yc, field, wbd, res, sch, k2, k4, interf1, interf2, interf3, interf4, lf, cp, cv, gam, cs, tref, muref, rgaz, mach, prandtl, pinf=None):
''' Write the data in a NPZ file'''
w0 = _np.array(w, copy=True)
res0 = _np.array(res, copy=True)
routinein = lf[0]
routineout = lf[1]
routinenr = lf[2]
routinew = lf[3]
routinesch = lf[4]
libbnd = lf[5]
libsch = lf[6]
_np.savez(filename+'.npz',x0=x0,y0=y0,xc=xc,yc=yc,vol=vol,volf=volf,nx=nx,ny=ny,im=im,jm=jm,gh=gh,FlowSolutionInit=w0,ResidualInit=res0,interf1=interf1,interf2=interf2,interf3=interf3,interf4=interf4,BC1=libbnd + "." + routinein,BC2=libbnd + "." + routineout,BC3=libbnd + "." + routinew,BC4=libbnd + "." + routinenr,Wbd=wbd,Field=field,SchemeType=sch,Scheme=libsch + "." + routinesch,k2=k2,k4=k4,Mach=mach,Prandtl=prandtl,Rgaz=rgaz,Cp=cp,Cv=cv,Gamma=gam,TemperatureSutherland=cs,TemperatureRefSutherland=tref,ViscosityRefSutherland=muref,Pref=pinf,CFL=cfl,Freqres=freqres,Freqsort=freqsort)
# print(_np.load(filename+'.npz')['BC4'])
def fillCGNS(filename, t, w, res, IA, JA, Jacvol, gh):
''' fill a given CGNS tree with current solution, residual and the lists (IA,JA,Aij) to build the Jacobian'''
# I.__FlowSolutionCenters__ = 'FlowSolution#EndOfRun'
z=I.getZones(t)[0]
# Fs2=I.newFlowSolution(name="FlowSolution#EndOfRun", gridLocation='CellCenter', parent=z)
# # I.newGridLocation(value='CellCenter', parent=Fs2)
# I.newDataArray(name="Density",value=w[gh:-gh,gh:-gh,0],parent=Fs2)
# I.newDataArray(name="MomentumX",value=w[gh:-gh,gh:-gh,1],parent=Fs2)
# I.newDataArray(name="MomentumY",value=w[gh:-gh,gh:-gh,2],parent=Fs2)
# I.newDataArray(name="MomentumZ",value=w[gh:-gh,gh:-gh,3],parent=Fs2)
# I.newDataArray(name="EnergyStagnationDensity",value=w[gh:-gh,gh:-gh,4],parent=Fs2)
# Res2 = I.newDiscreteData(name="Residual#EndOfRun", parent=z)
# I.newGridLocation(value='CellCenter', parent=Res2)
# I.newDataArray(name="ResidualDensity",value=res[gh:-gh,gh:-gh,0],parent=Res2)
# I.newDataArray(name="ResidualMomentumX",value=res[gh:-gh,gh:-gh,1],parent=Res2)
# I.newDataArray(name="ResidualMomentumY",value=res[gh:-gh,gh:-gh,2],parent=Res2)
# I.newDataArray(name="ResidualMomentumZ",value=res[gh:-gh,gh:-gh,3],parent=Res2)
# I.newDataArray(name="ResidualEnergyStagnationDensity",value=res[gh:-gh,gh:-gh,4],parent=Res2)
## With Ghost cells
Fs2=I.newFlowSolution(name="FlowSolution#EndOfRun", gridLocation='CellCenter', parent=z)
# I.newGridLocation(value='CellCenter', parent=Fs2)
I.newDataArray(name="Density",value=w[:,:,0],parent=Fs2)
I.newDataArray(name="MomentumX",value=w[:,:,1],parent=Fs2)
I.newDataArray(name="MomentumY",value=w[:,:,2],parent=Fs2)
I.newDataArray(name="MomentumZ",value=w[:,:,3],parent=Fs2)
I.newDataArray(name="EnergyStagnationDensity",value=w[:,:,4],parent=Fs2)
Res2 = I.newDiscreteData(name="Residual#EndOfRun", parent=z)
I.newGridLocation(value='CellCenter', parent=Res2)
I.newDataArray(name="ResidualDensity",value=res[:,:,0],parent=Res2)
I.newDataArray(name="ResidualMomentumX",value=res[:,:,1],parent=Res2)
I.newDataArray(name="ResidualMomentumY",value=res[:,:,2],parent=Res2)
I.newDataArray(name="ResidualMomentumZ",value=res[:,:,3],parent=Res2)
I.newDataArray(name="ResidualEnergyStagnationDensity",value=res[:,:,4],parent=Res2)
Jac = I.newDiscreteData(name="JacobianListsCSR", parent=z)
I.newGridLocation(value='CellCenter', parent=Jac)
I.newDataArray(name="IA",value=IA,parent=Jac)
I.newDataArray(name="JA",value=JA,parent=Jac)
I.newDataArray(name="Aij",value=Jacvol,parent=Jac)
C.convertPyTree2File(t, filename+'.hdf')
def fillNPZ(filename, w, res, IA, JA, Jacvol, gh, wallprof=None):
''' fill a given NPZ file with current solution, residual and the lists (IA,JA,Aij) to build the Jacobian'''
dic = dict(_np.load(filename+'.npz'))
dic['wallprof'] = wallprof
dic['ResidualEndOfRun'] = res
dic['FlowSolutionEndOfRun'] = w
dic['IA'] = IA
dic['JA'] = JA
dic['Aij'] = Jacvol
_np.savez(filename+'.npz', **dic)
def fillNPZ_3D(filename, IAdz, JAdz, Jacdz, IAdz2, JAdz2, Jacdz2):
''' fill a given NPZ file with the lists (IA,JA,Aij) for Dz and Dz2 to build the 3D Jacobian'''
dic = dict(_np.load(filename+'.npz'))
dic['IAdz'] = IAdz
dic['JAdz'] = JAdz
dic['Aijdz'] = Jacdz
dic['IAdz2'] = IAdz2
dic['JAdz2'] = JAdz2
dic['Aijdz2'] = Jacdz2
_np.savez(filename+'.npz', **dic)
def fillNPZ_dRdp(filename, IAdp, JAdp, Jacdp):
''' fill a given NPZ file with the lists (IA,JA,Aij) for the derivative of the residual with a flow parameter p'''
dic = dict(_np.load(filename+'.npz', allow_pickle=True))
dic['IAdRdp'] = IAdp
dic['JAdRdp'] = JAdp
dic['AijdRdp'] = Jacdp
_np.savez(filename+'.npz', **dic)
def readCGNStree(filename):
''' read a CGNS tree made to run BROADCAST code '''
# T = cgm.load(filename+'.hdf')
# treeBroadcast, cgnslinks, cgnspaths = T[0], T[1], T[2]
treeBroadcast = C.convertFile2PyTree(filename+'.hdf')
vol = I.getValue(I.getNodeFromName(treeBroadcast, "Volume"))
volf = I.getValue(I.getNodeFromName(treeBroadcast, "VolumeInv"))
nx = I.getValue(I.getNodeFromName(treeBroadcast, "NormalX"))
ny = I.getValue(I.getNodeFromName(treeBroadcast, "NormalY"))
im = I.getValue(I.getNodeFromName(treeBroadcast, "DimX"))
jm = I.getValue(I.getNodeFromName(treeBroadcast, "DimY"))
gh = I.getValue(I.getNodeFromName(treeBroadcast, "GhostCell"))
x0 = I.getValue(I.getNodeFromName(treeBroadcast, "CoordinateX"))
y0 = I.getValue(I.getNodeFromName(treeBroadcast, "CoordinateY"))
xc = I.getValue(I.getNodeFromName(treeBroadcast, "CoordinateCenterX"))
yc = I.getValue(I.getNodeFromName(treeBroadcast, "CoordinateCenterY"))
wbd = I.getValue(I.getNodeFromName(treeBroadcast, "Wbd"))
field = I.getValue(I.getNodeFromName(treeBroadcast, "Field"))
pinf = I.getValue(I.getNodeFromName(treeBroadcast, "Pref"))
sch = I.getValue(I.getNodeFromName(treeBroadcast, "SchemeType"))
k2 = I.getValue(I.getNodeFromName(treeBroadcast, "k2"))
k4 = I.getValue(I.getNodeFromName(treeBroadcast, "k4"))
cp = I.getValue(I.getNodeFromName(treeBroadcast, "Cp"))
cv = I.getValue(I.getNodeFromName(treeBroadcast, "Cv"))
gam = I.getValue(I.getNodeFromName(treeBroadcast, "Gamma"))
rgaz = I.getValue(I.getNodeFromName(treeBroadcast, "Rgaz"))
cs = I.getValue(I.getNodeFromName(treeBroadcast, "TemperatureSutherland"))
tref = I.getValue(I.getNodeFromName(treeBroadcast, "TemperatureRefSutherland"))
muref = I.getValue(I.getNodeFromName(treeBroadcast, "ViscosityRefSutherland"))
mach = I.getValue(I.getNodeFromName(treeBroadcast, "Mach"))
prandtl = I.getValue(I.getNodeFromName(treeBroadcast, "Prandtl"))
pathBCInflow = I.getPathsFromName(treeBroadcast,"Inflow", pyCGNSLike=True)[0]
interf1 = _np.reshape(I.getValue(I.getNodeFromPath(treeBroadcast, pathBCInflow + "/PointRange")), (2,2), order='F')
pathBCOutflow = I.getPathsFromName(treeBroadcast,"Outflow", pyCGNSLike=True)[0]
interf2 = _np.reshape(I.getValue(I.getNodeFromPath(treeBroadcast, pathBCOutflow + "/PointRange")), (2,2), order='F')
pathBCWall = I.getPathsFromName(treeBroadcast,"Wall", pyCGNSLike=True)[0]
interf3 = _np.reshape(I.getValue(I.getNodeFromPath(treeBroadcast, pathBCWall + "/PointRange")), (2,2), order='F')
pathBCNoRef = I.getPathsFromName(treeBroadcast,"NoRef", pyCGNSLike=True)[0]
interf4 = _np.reshape(I.getValue(I.getNodeFromPath(treeBroadcast, pathBCNoRef + "/PointRange")), (2,2), order='F')
libsch, routinesch = I.getValue(I.getNodeFromName(treeBroadcast, "Scheme")).split('.')
libbnd, routinein = I.getValue(I.getNodeFromPath(treeBroadcast, pathBCInflow + "/FamilyName")).split('.')
libbnd, routineout = I.getValue(I.getNodeFromPath(treeBroadcast, pathBCOutflow + "/FamilyName")).split('.')
libbnd, routinew = I.getValue(I.getNodeFromPath(treeBroadcast, pathBCWall + "/FamilyName")).split('.')
libbnd, routinenr = I.getValue(I.getNodeFromPath(treeBroadcast, pathBCNoRef + "/FamilyName")).split('.')
w = _np.zeros((im + 2*gh , jm + 2*gh , 5), order='F')
res = _np.zeros((im + 2*gh , jm + 2*gh , 5), order='F')
if I.getPathsFromName(treeBroadcast,"FlowSolution#EndOfRun", pyCGNSLike=True) == []:
pathw = I.getPathsFromName(treeBroadcast,"FlowSolution#Init", pyCGNSLike=True)[0]
pathres = I.getPathsFromName(treeBroadcast,"Residual#Init", pyCGNSLike=True)[0]
else:
pathw = I.getPathsFromName(treeBroadcast,"FlowSolution#EndOfRun", pyCGNSLike=True)[0]
pathres = I.getPathsFromName(treeBroadcast,"Residual#EndOfRun", pyCGNSLike=True)[0]
w[:,:,0] = I.getValue(I.getNodeFromPath(treeBroadcast, pathw + "/Density"))
w[:,:,1] = I.getValue(I.getNodeFromPath(treeBroadcast, pathw + "/MomentumX"))
w[:,:,2] = I.getValue(I.getNodeFromPath(treeBroadcast, pathw + "/MomentumY"))
w[:,:,3] = I.getValue(I.getNodeFromPath(treeBroadcast, pathw + "/MomentumZ"))
w[:,:,4] = I.getValue(I.getNodeFromPath(treeBroadcast, pathw + "/EnergyStagnationDensity"))
res[:,:,0] = I.getValue(I.getNodeFromPath(treeBroadcast, pathres + "/ResidualDensity"))
res[:,:,1] = I.getValue(I.getNodeFromPath(treeBroadcast, pathres + "/ResidualMomentumX"))
res[:,:,2] = I.getValue(I.getNodeFromPath(treeBroadcast, pathres + "/ResidualMomentumY"))
res[:,:,3] = I.getValue(I.getNodeFromPath(treeBroadcast, pathres + "/ResidualMomentumZ"))
res[:,:,4] = I.getValue(I.getNodeFromPath(treeBroadcast, pathres + "/ResidualEnergyStagnationDensity"))
lf = [routinein, routineout, routinenr, routinew, routinesch, libbnd, libsch]
# return treeBroadcast, im, jm, gh, w, x0, y0, vol, volf, nx, ny, xc, yc, field, wbd, res, sch, k2, k4, interf1, interf2, interf3, interf4, lf, cp, cv, gam, cs, tref, muref, rgaz, mach, prandtl
return treeBroadcast, im, jm, gh, w, x0, y0, vol, volf, nx, ny, xc, yc, field, wbd, res, sch, k2, k4, interf1, interf2, interf3, interf4, lf, cp, cv, gam, cs, tref, muref, rgaz, mach, prandtl, pinf
def readNPZtree(filename):
''' read a NPZ file made to run BROADCAST code '''
dic = _np.load(filename+'.npz')
im = dic['im']
jm = dic['jm']
gh = dic['gh']
if 'FlowSolutionEndOfRun' in dic:
w = dic['FlowSolutionEndOfRun']
res = dic['ResidualEndOfRun']
print('Solution read at EndOfRun')
else:
w = dic['FlowSolutionInit']
res = dic['ResidualInit']
x0 = dic['x0']
y0 = dic['y0']
xc = dic['xc']
yc = dic['yc']
vol = dic['vol']
volf = dic['volf']
nx = dic['nx']
ny = dic['ny']
field = dic['Field']
wbd = dic['Wbd']
sch = _np.array2string(dic['SchemeType'])[1:-1]
k2 = dic['k2']
k4 = dic['k4']
cp = dic['Cp']
cv = dic['Cv']
gam = dic['Gamma']
rgaz = dic['Rgaz']
mach = dic['Mach']
prandtl = dic['Prandtl']
cs = dic['TemperatureSutherland']
tref = dic['TemperatureRefSutherland']
muref = dic['ViscosityRefSutherland']
interf1 = dic['interf1']
interf2 = dic['interf2']
interf3 = dic['interf3']
interf4 = dic['interf4']
BC1 = dic['BC1']
BC2 = dic['BC2']
BC3 = dic['BC3']
BC4 = dic['BC4']
scheme = dic['Scheme']
pinf = dic['Pref']
cfl = dic['CFL']
freqres = dic['Freqres']
freqsort = dic['Freqsort']
libsch, routinesch = _np.array2string(scheme)[1:-1].split('.')
libbnd, routinein = _np.array2string(BC1)[1:-1].split('.')
libbnd, routineout = _np.array2string(BC2)[1:-1].split('.')
libbnd, routinew = _np.array2string(BC3)[1:-1].split('.')
libbnd, routinenr = _np.array2string(BC4)[1:-1].split('.')
lf = [routinein, routineout, routinenr, routinew, routinesch, libbnd, libsch]
return im, jm, gh, w, x0, y0, vol, volf, nx, ny, xc, yc, field, wbd, res, sch, k2, k4, interf1, interf2, interf3, interf4, lf, cp, cv, gam, cs, tref, muref, rgaz, mach, prandtl, pinf, cfl, freqres, freqsort
######################### Private functions ####################
# solve monoblock Boundary Layer
def bl2d_prepro(dgeom = dict(), dphys = dict(), dnum = dict(), compmode = 'direct', lf = list(), lflin = list(), out_dir = 'totodir', treename='tree', isresol= False):
'''
exemple of monoblock use of 2DTOY
to simulate 2D laminar Boundary Layer flow
'''
os.system('mkdir -p %s' % out_dir)
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
# Create mesh
im = dgeom['im']
jm = dgeom['jm']
L = dgeom['length']
high = dgeom['high']
xini = dgeom['xini']
ite = dnum['ite']
cfl = dnum['cfl']
k2 = dnum['k2']
k4 = dnum['k4']
sch = dnum['sch']
order = dnum['order']
freqres = dnum['freqres']
freqsort = dnum['freqsort']
# Set ghost cells dimension
if sch == 'dnc':
gh = (order+1) // 2
else:
gh = (order-1) // 2 + 1 # +1 to avoid grad exchanges in multiblock configurations
# gh = gh+2
if compmode == 'direct':
rkcoefs = dnum['rkcoefs']
elif compmode == 'fixed_point':
lasolver = dnum['lasolver']
x = _np.linspace(xini, xini+L , im+1)
## With stretching
# growthst = dgeom['growth sp']
# imst = dgeom['im sp']
# xst = mesh.stretch(imst, growthst, xini+L, L/im)
# x = _np.concatenate((x, xst))
# im = im + imst
## MESH v2
Ny_in = 80*jm//100 #80%
deltaBL = high/4 #high/4
percent = 0.02
Ny_out = jm - Ny_in
Nend = high/deltaBL
y_int = mesh.bigeom_stretch_in(Ny_in, deltaBL, percent)
y_out = mesh.exp_stretch_out(Ny_out, deltaBL, percent, Nend)
y = _np.concatenate((y_int, y_out))
# y = mesh.bigeom_stretch_in(Ny_in, deltaBL, percent)
# Initialize all cfd fields
x0 = _np.zeros((im + 2*gh + 1, jm + 2*gh + 1 ), order='F')
y0 = _np.zeros((im + 2*gh + 1, jm + 2*gh + 1 ), order='F')
xc = _np.zeros((im + 2*gh , jm + 2*gh ), order='F')
yc = _np.zeros((im + 2*gh , jm + 2*gh ), order='F')
nx = _np.zeros((im + 2*gh + 1, jm + 2*gh + 1, 2), order='F')
ny = _np.zeros((im + 2*gh + 1, jm + 2*gh + 1, 2), order='F')
vol = _np.zeros((im + 2*gh , jm + 2*gh ), order='F')
volf= _np.zeros((im + 2*gh , jm + 2*gh , 2), order='F')
w = _np.zeros((im + 2*gh , jm + 2*gh , 5), order='F')
res = _np.zeros((im + 2*gh , jm + 2*gh , 5), order='F')
# Compute Geometry
for i in range(im+1):
x0[i+gh,:] = x[i]
for j in range(jm+1):
y0[:,j+gh] = y[j]
# OR import your own mesh
# x0 = ...
# get physical constants
gam = dphys['gam']
cs = dphys['cs']
tref = dphys['Ts']
muref = dphys['musuth']
rgaz = dphys['rgaz']
prandtl = dphys['Prandtl']
mach = dphys['Mach']
tinf = dphys['T0']
Lref = dphys['Lref']
StateRef = dphys['stateref']
muinf = __comp_Sutherland(muref, tref, cs, tinf)
sound = _np.sqrt(gam*rgaz*tinf)
uinf = mach * sound
einf = __compute_tot_energy_inf(rgaz, gam, tinf, uinf)
dx = L/((im-1)*Lref) # adim done after muinf A.Poulain
dy = (y[1]-y[0])/Lref
sound = 1./dphys['Mach']
dt = cfl * min(dy,dx) / (sound+1.)
dtm1 = 1./dt
print("============setup===============")
print('scheme = ', sch)
print('order(or nb pts) = ', order)
print('dt = ', dt)
print('StateRef = ', StateRef)
print("gam = ", dphys['gam'])
print("Ts = ", dphys['Ts'])
print("cs = ", dphys['cs'])
print("musuth = ", dphys['musuth'])
print("rgaz = ", dphys['rgaz'])
print("Prandtl = ", dphys['Prandtl'])
print("Mach = ", dphys['Mach'])
print("T0 = ", dphys['T0'])
print("Runit = ", dphys['Runit'])
print("Lref = ", dphys['Lref'])
print("============setup===============")
print(" ")
print(" ")
#for similitude sol
dphys['mu0'] = muinf
if StateRef == 'm0_p0_t0':
pinf = dphys['P0']
rhoinf = pinf/(rgaz*tinf)
runit = rhoinf * uinf/muinf
dphys['Runit'] = runit
elif StateRef == 'm0_runit_t0':
runit = dphys['Runit']
rhoinf = runit*muinf/uinf
pinf = rhoinf*rgaz*tinf
print('mu_inf = ', muinf)
print('u_inf = ', uinf)
print('nu_inf = ', muinf/rhoinf)
# Reynolds ------------------------------------------------------------
rey = runit * L
cp = gam * rgaz /(gam-1.)
cv = rgaz /(gam-1.)
# StateRef
stateref = _np.zeros(5)
stateref[0] = rhoinf
stateref[1] = rhoinf * uinf
stateref[2] = 0.
stateref[3] = 0.
stateref[4] = rhoinf * einf
# Adim (by RVT = rho, velo et temperature)
Roref = rhoinf
Vref = uinf
Tref = tinf
## Adim with ref length
# Lref = 8.e-2
# Muref = Roref*Vref*Lref
## OR Adim with unit Reynolds
Muref = muinf
Lref = Muref/(Roref*Vref)
## OR no normalisation
# Roref = 1.
# Vref = 1.
# Tref = 1.
# Lref = 1.
# Muref = 1.
Pref = Roref*Vref**2
Cvref = Vref**2/Tref
Eref = Vref**2
Rgpref = Cvref
uinf = uinf/Vref
tinf = tinf/Tref
rhoinf = rhoinf/Roref
# sound = sound/Vref
pinf = pinf/Pref
cp = cp/Cvref
cv = cv/Cvref
rgaz = rgaz/Rgpref
einf = einf/Eref
# sutherland
tref = tref/Tref
muref = muref/Muref
cs = cs/Tref
muinf = muinf/Muref
# StateAdim
state_adim = _np.zeros(5)
state_adim[0] = rhoinf
state_adim[1] = rhoinf * uinf
state_adim[2] = 0.
state_adim[3] = 0.
state_adim[4] = rhoinf * einf
print('======StateAdim=========')
print(' ')
print('state_adim uinf = ', uinf)
print('state_adim tinf = ', tinf)
print('state_adim rhoinf = ', rhoinf)
print('state_adim sound = ', sound)
print('state_adim pinf = ', pinf)
print('state_adim cp = ', cp)
print('state_adim cv = ', cv)
print('state_adim rgaz = ', rgaz)
print('state_adim einf = ', einf)
print('state_adim tref = ', tref)
print('state_adim muref = ', muref)
print('state_adim cs = ', cs)
print('state_adim muinf = ', muinf)
print('state_adim runit = ', runit)
print('======StateAdim=========')
print(' ')
# Adim Geom:
x0 *= 1./Lref
y0 *= 1./Lref
f_geom.computegeom_2d(x0,y0,nx,ny,xc,yc,vol,volf,im,jm,gh)
#interfaces definitions (may be done at the begining)
# Ilo
interf1 = _np.zeros((2,2), order='F')
interf1[0,0] = 1 # imin
interf1[0,1] = 1 # jmin
interf1[1,0] = 1 # imax
interf1[1,1] = jm # jmax
# Ihi
interf2 = _np.zeros((2,2), order='F')
interf2[0,0] = im # imin
interf2[0,1] = 1 # jmin
interf2[1,0] = im # imax
interf2[1,1] = jm+gh # jmax
# Jlo
interf3 = _np.zeros((2,2), order='F')
interf3[0,0] = 1-gh # imin
interf3[0,1] = 1 # jmin
interf3[1,0] = im+gh # imax
interf3[1,1] = 1 # jmax
# Jhi
interf4 = _np.zeros((2,2), order='F')
interf4[0,0] = 1-gh # imin
interf4[0,1] = jm # jmin
interf4[1,0] = im # imax
interf4[1,1]= jm # jmax
# Blasius for inlet
field = _np.zeros((jm, gh, 5), order = 'F') # profile for inlet, different values inside the ghost cells
wbd = _np.zeros((im+gh , 5), order = 'F') # profile for non-reflection top BC, value at the first ghost cell only
# Initialization
wbd[:, 0] = state_adim[0]
wbd[:, 1] = state_adim[1]
wbd[:, 2] = state_adim[2]
wbd[:, 3] = state_adim[3]
wbd[:, 4] = state_adim[4]
field[:, :, 0] = state_adim[0]
field[:, :, 1] = state_adim[1]
field[:, :, 2] = state_adim[2]
field[:, :, 3] = state_adim[3]
field[:, :, 4] = state_adim[4]
# Initialize(field, w, )
w[:, :, 0] = state_adim[0]
w[:, :, 1] = state_adim[1]
w[:, :, 2] = state_adim[2]
w[:, :, 3] = state_adim[3]
w[:, :, 4] = state_adim[4]
# Initialise from A.Poulain routine
## Compressible self-similar profile
road,uad,vad,Ead = blsim.BLprofile(x0[:,:]*Lref, y0[:,gh:]*Lref,mach, dphys, isplot=False, damped=False)
road = centers_array(road)
uad = centers_array(uad)
vad = centers_array(vad)
Ead = centers_array(Ead)
w[:, gh:, 0] = road[:,:] * rhoinf
w[:, gh:, 1] = road[:,:]*uad[:,:] * rhoinf * uinf
w[:, gh:, 2] = road[:,:]*vad[:,:] * rhoinf * uinf
w[:, gh:, 4] = road[:,:]*Ead[:,:] * rhoinf * einf
f_init.set_bndbl_2d(w, field, wbd, im)
######## Restart from a previous solution with exactly the same mesh
import restart_init as ri
filet = './Wksp/dnc_5/initialisation_gh.dat'
# Xin, Yin, roin, rouin, rovin, rowin, roein = ri.read_init(filet)
## with exactly the same mesh
# w[gh:-gh, gh:-gh, 0] = roin
# w[gh:-gh, gh:-gh, 1] = rouin
# w[gh:-gh, gh:-gh, 2] = rovin
# w[gh:-gh, gh:-gh, 3] = rowin
# w[gh:-gh, gh:-gh, 4] = roein
## OR interpolate from a different mesh (only valid for cartesian rectangular grid)
# import interpgrid
# w[gh:-gh, gh:-gh, 0] = interpgrid.interpgrid(Xin, Yin, roin, xc[gh:-gh,:], yc[:,gh:-gh])
# w[gh:-gh, gh:-gh, 1] = interpgrid.interpgrid(Xin, Yin, rouin, xc[gh:-gh,:], yc[:,gh:-gh])
# w[gh:-gh, gh:-gh, 2] = interpgrid.interpgrid(Xin, Yin, rovin, xc[gh:-gh,:], yc[:,gh:-gh])
# w[gh:-gh, gh:-gh, 3] = interpgrid.interpgrid(Xin, Yin, rowin, xc[gh:-gh,:], yc[:,gh:-gh])
# w[gh:-gh, gh:-gh, 4] = interpgrid.interpgrid(Xin, Yin, roein, xc[gh:-gh,:], yc[:,gh:-gh])
filename = out_dir + '/initialisation_gh.dat'
__writestate_center_gh(filename, im+2*gh, jm+2*gh, w, xc, yc)
filename = out_dir + '/' + treename
if rank ==0:
writeNPZ(filename, im, jm, gh, w, x0, y0, vol, volf, nx, ny, xc, yc, field, wbd, res, sch, k2, k4, interf1, interf2, interf3, interf4, lf, cp, cv, gam, cs, tref, muref, rgaz, mach, prandtl, cfl, freqres, freqsort, pinf=pinf)
def bl2d_fromNPZtree(treename, ite = 10, compmode = 'fixed_point', out_dir = 'totodir', isresol= False):
filename = out_dir + '/' + treename
# tree, im, jm, gh, w, x0, y0, vol, volf, nx, ny, xc, yc, field, wbd, res, sch, k2, k4, interf1, interf2, interf3, interf4, lf, cp, cv, gam, cs, tref, muref, rgaz, mach, prandtl = readCGNStree(filename)
# tree, im, jm, gh, w, x0, y0, vol, volf, nx, ny, xc, yc, field, wbd, res, sch, k2, k4, interf1, interf2, interf3, interf4, lf, cp, cv, gam, cs, tref, muref, rgaz, mach, prandtl, pinf = readCGNStree(filename)
im, jm, gh, w, x0, y0, vol, volf, nx, ny, xc, yc, field, wbd, res, sch, k2, k4, interf1, interf2, interf3, interf4, lf, cp, cv, gam, cs, tref, muref, rgaz, mach, prandtl, pinf, cfl, freqres, freqsort = readNPZtree(filename)
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
Lmax = 1.e6 #0.25e6 #0.10e6 #0.40e6 #1.e6
r2 = 1. #elsA 0.2 #0.1 #0.2 #1.
r3 = 1.3 #elsA 1.3 #0.01 #1.3
r4 = 30. #els1 1. #0.005 #0.01*100000 #0.02 #0.01? #0.002 #14. #30
routinein = lf[0]
routineout = lf[1]
routinenr = lf[2]
routinew = lf[3]
routinesch = lf[4]
libbnd = lf[5]
libsch = lf[6]
finflow = eval("%s.%s" % (libbnd, routinein))
foutflow = eval("%s.%s" % (libbnd, routineout))
fnoref = eval("%s.%s" % (libbnd, routinenr ))
fwall = eval("%s.%s" % (libbnd, routinew ))
fsch = eval("%s.%s" % (libsch, routinesch))
# Time Marching Loop
if compmode == 'direct':
# freqres = ite/2
# freqsort= ite/1
g1 = 1.0
g2 = 0.5 # 1./2.
g3 = 0.165919771368
g4 = 0.040919732041
g5 = 0.007555704391
g6 = 0.000891421261
rk6 = 1.
rk5 = g2
rk4 = g3/rk5
rk3 = g4/(rk4*rk5)
rk2 = g5/(rk3*rk4*rk5)
rk1 = g6/(rk2*rk3*rk4*rk5)
rkcoefs = [rk1, rk2, rk3, rk4, rk5, rk6]
freq = freqsort
dt = cfl * (yc[gh,gh+1] - yc[gh,gh]) / (1./mach + 1.)
time = 0.
wreal = w*1.
denom = im*jm*freq*len(rkcoefs)
timein0 = timeit.time.time()
for it in range(1,ite+1):
for rk in rkcoefs:
# Boundary on state vector
finflow(w,'Ilo',interf1,field,nx,ny,gam,im,jm)
# finflow(w,'Ilo', interf1, field,im,jm)
fnoref(w,wbd,'Jhi',interf4,nx,ny,gam,gh,im,jm)
foutflow(w,'Ihi', interf2, im, jm, gh)
fwall(w,'Jlo', gam, interf3, gh, im, jm)
# Compute spatial discretization
if sch == 'dnc':
# fwall needed for dissipation near bnd_wall
fsch(res, w, x0, y0, nx, ny, xc, yc, vol, volf, gh, cp, cv, prandtl, gam, rgaz, cs, muref, tref, cs, k2, k4, im, jm)
else:
fsch(res, w, x0, y0, nx, ny, xc, yc, vol, volf, gh, cp, cv, prandtl, gam, rgaz, cs, muref, tref, cs, k2, im, jm)
# advance rk
w[gh:-gh,gh:-gh,0] = wreal[gh:-gh,gh:-gh,0] + rk * dt * res[gh:-gh,gh:-gh,0] / vol[gh:-gh,gh:-gh]
w[gh:-gh,gh:-gh,1] = wreal[gh:-gh,gh:-gh,1] + rk * dt * res[gh:-gh,gh:-gh,1] / vol[gh:-gh,gh:-gh]
w[gh:-gh,gh:-gh,2] = wreal[gh:-gh,gh:-gh,2] + rk * dt * res[gh:-gh,gh:-gh,2] / vol[gh:-gh,gh:-gh]
w[gh:-gh,gh:-gh,3] = wreal[gh:-gh,gh:-gh,3] + rk * dt * res[gh:-gh,gh:-gh,3] / vol[gh:-gh,gh:-gh]
w[gh:-gh,gh:-gh,4] = wreal[gh:-gh,gh:-gh,4] + rk * dt * res[gh:-gh,gh:-gh,4] / vol[gh:-gh,gh:-gh]
#Finalize time step
if it == 1:
norm0, nmoy0 = f_norm.compute_norml2(res ,im, jm, gh)
for lala in range(5):
if (norm0[lala] <=3.e-16): norm0[lala] = 1.
time += dt
wreal = w * 1.
if it%freqres == 0:
norm, nmoy = f_norm.compute_norml2(res ,im, jm, gh)
print('ite = %i , norm2(res) = %s' % (it, norm/norm0))
# if it%freq == 0:
# timetosort = timeit.time.time()
# print 'Time in function = ', (timetosort- timein0) / denom
# norm, nmoy = f_norm.compute_norml2(res ,im, jm, gh)
# print 'ite = %i , norm2(res) = %s' % (it, norm/norm0)
# # print 'write file'
# # usefull for plotting result
# fwall(w,'Jlo', gam, interf3, gh, im, jm)
# filename = out_dir + '/state_at_ite%i.dat' % it
# __writestate_node(filename, im, jm, w, x0, y0, gh)
# filename = out_dir + '/state_atcenter_ite%i.dat' % it
# __writestate_center(filename, im, jm, w, xc, yc, gh)
# timein0 = timeit.time.time()
if it%freqsort == 0:
norm, nmoy = f_norm.compute_norml2(res ,im, jm, gh)
print('ite = %i , norm2(res) = %s' % (it, norm/norm0))
# filename = out_dir + '/state_at_ite%i.dat' % it
# __writestate_node(filename, im, jm, w, x0, y0, gh)
filename = out_dir + '/state_atcenter_ite%i.dat' % it
__writestate_center(filename, im, jm, w, xc, yc, gh)
if it == ite:
filename = out_dir + '/state_atcentergh_ite%i.dat' % it
__writestate_center_gh(filename, im, jm, w, xc, yc)
elif compmode == 'impli':
fimpli = lf[-1]
time = 0.
dtcoef = 1.
# wreal = w*1.
dw = _np.zeros((im + 2*gh , jm + 2*gh , 5), order='F')
# Boundary on state vector
finflow(w,'Ilo',interf1,field,nx,ny,gam,im,jm)
# finflow(w,'Ilo', interf1, field,im,jm)
fnoref(w,wbd,'Jhi',interf4,nx,ny,gam,gh,im,jm)
foutflow(w,'Ihi', interf2, im, jm, gh)
fwall(w,'Jlo', gam, interf3, gh, im, jm)
filename = out_dir + '/initialisation_gh.dat'
__writestate_center_gh(filename, im+2*gh, jm+2*gh, w, xc, yc)
lmax = 10 #4
for it in range(1,ite+1):
# if it > 4000: cfl = min(0.5 + (it-4000)*0.001 ,1.)
# if it > 8000: cfl = min(3. + (it-8000)*0.001 ,10.)
# Compute spatial discretization
if sch == 'dnc':
# fwall needed for dissipation near bnd_wall
fsch(res, w, x0, y0, nx, ny, xc, yc, vol, volf, gh, cp, cv, prandtl, gam, rgaz, cs, muref, tref, cs, k2, k4, im, jm)
else:
fsch(res, w, x0, y0, nx, ny, xc, yc, vol, volf, gh, cp, cv, prandtl, gam, rgaz, cs, muref, tref, cs, k2, im, jm)
# implicit (MF)
fimpli(dw,nx,ny,w,res,vol,volf,dtcoef,cfl,gam,rgaz,prandtl,lmax,gh,cv,cs,muref,tref,cs,im,jm)
# advance BDF1
w[gh:-gh,gh:-gh,0] += dw[gh:-gh,gh:-gh,0]
w[gh:-gh,gh:-gh,1] += dw[gh:-gh,gh:-gh,1]
w[gh:-gh,gh:-gh,2] += dw[gh:-gh,gh:-gh,2]
w[gh:-gh,gh:-gh,3] += dw[gh:-gh,gh:-gh,3]
w[gh:-gh,gh:-gh,4] += dw[gh:-gh,gh:-gh,4]
# Boundary on state vector
finflow(w,'Ilo',interf1,field,nx,ny,gam,im,jm)
# finflow(w,'Ilo', interf1, field,im,jm)
fnoref(w,wbd,'Jhi',interf4,nx,ny,gam,gh,im,jm)
foutflow(w,'Ihi', interf2, im, jm, gh)
fwall(w,'Jlo', gam, interf3, gh, im, jm)
#Finalize time step
if it == 1:
norm0, nmoy0 = f_norm.compute_norml2(res ,im, jm, gh)
for lala in range(5):
if (norm0[lala] <=3.e-16): norm0[lala] = 1.
impl, impl0 = f_norm.compute_norml2(dw ,im, jm, gh)
print('ite = %i , norm2(res) = %s' % (it, norm0))
print('ite = %i , norm2(imp) = %s' % (it, impl))
if it%freqres == 0:
print('cfl = ', cfl)
norm, nmoy = f_norm.compute_norml2(res ,im, jm, gh)
print('ite = %i , norm2(res) = %s' % (it, norm/norm0))
if it%freqsort == 0:
norm, nmoy = f_norm.compute_norml2(res ,im, jm, gh)
print('ite = %i , norm2(res) = %s' % (it, norm/norm0))
# filename = out_dir + '/state_at_ite%i.dat' % it
# __writestate_node(filename, im, jm, w, x0, y0, gh)
filename = out_dir + '/state_atcenter_ite%i.dat' % it
__writestate_center(filename, im, jm, w, xc, yc, gh)
# timein0 = timeit.time.time()
if it == ite:
filename = out_dir + '/state_atcenter_ite%i.dat' % it
__writestate_center(filename, im, jm, w, xc, yc, gh)
filename = out_dir + '/state_atcentergh_ite%i.dat' % it
__writestate_center_gh(filename, im+2*gh, jm+2*gh, w, xc, yc)
elif compmode == 'fixed_point':