-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdata.py
49 lines (45 loc) · 1.92 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
import scipy.io as sio
def process_gridworld_data(input, imsize):
# run training from input matlab data file, and save test data prediction in output file
# load data from Matlab file, including
# im_data: flattened images
# state_data: concatenated one-hot vectors for each state variable
# state_xy_data: state variable (x,y position)
# label_data: one-hot vector for action (state difference)
im_size=[imsize, imsize]
matlab_data = sio.loadmat(input)
im_data = matlab_data["batch_im_data"]
im_data = (im_data - 1)/255 # obstacles = 1, free zone = 0
value_data = matlab_data["batch_value_data"]
state1_data = matlab_data["state_x_data"]
state2_data = matlab_data["state_y_data"]
label_data = matlab_data["batch_label_data"]
ydata = label_data.astype('int8')
Xim_data = im_data.astype('float32')
Xim_data = Xim_data.reshape(-1, 1, im_size[0], im_size[1])
Xval_data = value_data.astype('float32')
Xval_data = Xval_data.reshape(-1, 1, im_size[0], im_size[1])
Xdata = np.append(Xim_data, Xval_data, axis=1)
# Need to transpose because Theano is NCHW, while TensorFlow is NHWC
Xdata = np.transpose(Xdata, (0, 2, 3, 1))
S1data = state1_data.astype('int8')
S2data = state2_data.astype('int8')
all_training_samples = int(6/7.0*Xdata.shape[0])
training_samples = all_training_samples
Xtrain = Xdata[0:training_samples]
S1train = S1data[0:training_samples]
S2train = S2data[0:training_samples]
ytrain = ydata[0:training_samples]
Xtest = Xdata[all_training_samples:]
S1test = S1data[all_training_samples:]
S2test = S2data[all_training_samples:]
ytest = ydata[all_training_samples:]
ytest = ytest.flatten()
sortinds = np.random.permutation(training_samples)
Xtrain = Xtrain[sortinds]
S1train = S1train[sortinds]
S2train = S2train[sortinds]
ytrain = ytrain[sortinds]
ytrain = ytrain.flatten()
return Xtrain, S1train, S2train, ytrain, Xtest, S1test, S2test, ytest