-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
ShufflenetV2-export.py
178 lines (141 loc) · 6.71 KB
/
ShufflenetV2-export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# SPDX-License-Identifier: BSD-3-Clause
import torch
import onnxruntime
import onnx
from onnx import numpy_helper
from PIL import Image
from torchvision import transforms
import numpy as np
import os
import urllib
# GitHub Repo | Model
MODELS = [
('pytorch/vision:v0.5.0', 'shufflenet_v2_x0_5'),
('pytorch/vision:v0.5.0', 'shufflenet_v2_x1_0'),
]
data_dir = 'test_data_set_0'
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
urllib.request.urlretrieve(url, filename)
def flatten(inputs):
return [[flatten(i) for i in inputs] if isinstance(inputs, (list, tuple)) else inputs]
def update_flatten_list(inputs, res_list):
for i in inputs:
res_list.append(i) if not isinstance(i, (list, tuple)) else update_flatten_list(i, res_list)
return res_list
def save_tensor_proto(file_path, name, data):
tp = numpy_helper.from_array(data)
tp.name = name
with open(file_path, 'wb') as f:
f.write(tp.SerializeToString())
def save_data(test_data_dir, prefix, names, data_list):
if isinstance(data_list, torch.autograd.Variable) or isinstance(data_list, torch.Tensor):
data_list = [data_list]
for i, d in enumerate(data_list):
d = d.data.cpu().numpy()
save_tensor_proto(os.path.join(test_data_dir, '{0}_{1}.pb'.format(prefix, i)), names[i], d)
def save_model(name, model, inputs, outputs, input_names=None, output_names=None, **kwargs):
if hasattr(model, 'train'):
model.train(False)
dir = './'
if not os.path.exists(dir):
os.makedirs(dir)
dir = os.path.join(dir, 'test_' + name)
if not os.path.exists(dir):
os.makedirs(dir)
inputs_flatten = flatten(inputs)
inputs_flatten = update_flatten_list(inputs_flatten, [])
outputs_flatten = flatten(outputs)
outputs_flatten = update_flatten_list(outputs_flatten, [])
if input_names is None:
input_names = []
for i, _ in enumerate(inputs_flatten):
input_names.append('input' + str(i+1))
else:
np.testing.assert_equal(len(input_names), len(inputs_flatten),
"Number of input names provided is not equal to the number of inputs.")
if output_names is None:
output_names = []
for i, _ in enumerate(outputs_flatten):
output_names.append('output' + str(i+1))
else:
np.testing.assert_equal(len(output_names), len(outputs_flatten),
"Number of output names provided is not equal to the number of output.")
model_dir = os.path.join(dir, 'model.onnx')
if isinstance(model, torch.jit.ScriptModule):
torch.onnx._export(model, inputs, model_dir, verbose=True, input_names=input_names,
output_names=output_names, example_outputs=outputs, **kwargs)
else:
torch.onnx.export(model, inputs, model_dir, verbose=True, input_names=input_names,
output_names=output_names, example_outputs=outputs, **kwargs)
test_data_dir = os.path.join(dir, data_dir)
if not os.path.exists(test_data_dir):
os.makedirs(test_data_dir)
save_data(test_data_dir, "input", input_names, inputs_flatten)
save_data(test_data_dir, "output", output_names, outputs_flatten)
return model_dir, test_data_dir
def to_numpy(x):
if type(x) is not np.ndarray:
x = x.detach().cpu().numpy() if x.requires_grad else x.cpu().numpy()
return x
def inference(file, inputs, outputs):
inputs_flatten = flatten(inputs)
inputs_flatten = update_flatten_list(inputs_flatten, [])
outputs_flatten = flatten(outputs)
outputs_flatten = update_flatten_list(outputs_flatten, [])
# Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers
# other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default
# based on the build flags) when instantiating InferenceSession.
# For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following:
# onnxruntime.InferenceSession(path/to/model, providers=['CUDAExecutionProvider'])
sess = onnxruntime.InferenceSession(file)
ort_inputs = dict((sess.get_inputs()[i].name, to_numpy(input)) for i, input in enumerate(inputs_flatten))
res = sess.run(None, ort_inputs)
if outputs is not None:
print("== Checking model output ==")
[np.testing.assert_allclose(to_numpy(output), res[i], rtol=1e-03, atol=1e-05) for i, output in enumerate(outputs_flatten)]
print("== Done ==")
def shufflenetv2_test():
for github_repo, model in MODELS:
# Load pretrained model
model = torch.hub.load(github_repo, model, pretrained=True)
model.eval()
input_image = Image.open(filename)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_1 = input_tensor.unsqueeze(0)
output_1 = model(input_1)
model_dir, data_dir = save_model('shufflenetv2', model.cpu(), input_1, output_1,
opset_version=10,
input_names=['input'],
output_names=['output'],
dynamic_axes={"input": {0: 'batch_size'}, "output": {0: 'batch_size'}})
# Test exported model with TensorProto data saved in files
inputs_flatten = flatten(input_1)
inputs_flatten = update_flatten_list(inputs_flatten, [])
outputs_flatten = flatten(output_1)
outputs_flatten = update_flatten_list(outputs_flatten, [])
inputs = []
for i, _ in enumerate(inputs_flatten):
f_ = os.path.join(data_dir, '{0}_{1}.pb'.format("input", i))
tensor = onnx.TensorProto()
with open(f_, 'rb') as file:
tensor.ParseFromString(file.read())
inputs.append(numpy_helper.to_array(tensor))
outputs = []
for i, _ in enumerate(outputs_flatten):
f_ = os.path.join(data_dir, '{0}_{1}.pb'.format("output", i))
tensor = onnx.TensorProto()
with open(f_, 'rb') as file:
tensor.ParseFromString(file.read())
outputs.append(numpy_helper.to_array(tensor))
inference(model_dir, inputs, outputs)
# Test model with different input
input_2 = torch.randn(6, 3, 224, 224)
output_2 = model(input_2)
inference(model_dir, input_2, output_2)
shufflenetv2_test()