-
Notifications
You must be signed in to change notification settings - Fork 8
/
eval.py
287 lines (248 loc) · 10.6 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation script."""
import functools
from os import path
import sys
import time
import ipdb
from absl import app
from flax.metrics import tensorboard
from flax.training import checkpoints
import gin
from internal import configs
from internal import datasets
from internal import image
from internal import models
from internal import raw_utils
from internal import ref_utils
from internal import train_utils
from internal import utils
from internal import vis
import jax
from jax import random
import jax.numpy as jnp
import numpy as np
configs.define_common_flags()
jax.config.parse_flags_with_absl()
EXTRA_VIS_KEYS = [
'L', 'R', 'R_norm',
'Lx5', 'rgb_Lx5',
'Lx8', 'rgb_Lx8',
'Lg22', 'rgb_Lg22', 'L_avg0.6', 'rgb_L_avg0.6',
'L_enhanced', 'rgb_enhanced',
'L_avg_g22_x8', 'rgb_L_avg_g22_x8',
'gamma',
'alpha'
]
def main(unused_argv):
config = configs.load_config(save_config=False)
dataset = datasets.load_dataset('test', config.data_dir, config)
key = random.PRNGKey(20200823)
_, state, render_eval_pfn, _, _ = train_utils.setup_model(config, key)
if config.rawnerf_mode:
postprocess_fn = dataset.metadata['postprocess_fn']
else:
postprocess_fn = lambda z: z
if config.eval_raw_affine_cc:
cc_fun = raw_utils.match_images_affine
else:
cc_fun = image.color_correct
metric_harness = image.MetricHarness()
last_step = 0
out_dir = path.join(config.checkpoint_dir,
'path_renders' if config.render_path else 'test_preds')
path_fn = lambda x: path.join(out_dir, x)
if not config.eval_only_once:
summary_writer = tensorboard.SummaryWriter(
path.join(config.checkpoint_dir, 'eval'))
while True:
state = checkpoints.restore_checkpoint(config.checkpoint_dir, state)
step = int(state.step)
if step <= last_step:
print(f'Checkpoint step {step} <= last step {last_step}, sleeping.')
time.sleep(10)
continue
print(f'Evaluating checkpoint at step {step}.')
if config.eval_save_output and (not utils.isdir(out_dir)):
utils.makedirs(out_dir)
num_eval = min(dataset.size, config.eval_dataset_limit)
key = random.PRNGKey(0 if config.deterministic_showcase else step)
perm = random.permutation(key, num_eval)
showcase_indices = np.sort(perm[:config.num_showcase_images])
metrics = []
metrics_cc = []
showcases = []
render_times = []
for idx in range(dataset.size):
eval_start_time = time.time()
filename = path.basename(dataset.image_paths[idx])
batch = next(dataset)
if idx >= num_eval:
print(f'Skipping image {idx + 1}/{dataset.size}')
continue
print(f'Evaluating image {idx + 1}/{dataset.size}')
rays = batch.rays
train_frac = state.step / config.max_steps
rendering = models.render_image(
functools.partial(
render_eval_pfn,
state.params,
train_frac,
),
rays,
None,
config,
)
if jax.host_id() != 0: # Only record via host 0.
continue
render_times.append((time.time() - eval_start_time))
print(f'Rendered in {render_times[-1]:0.3f}s')
# Cast to 64-bit to ensure high precision for color correction function.
gt_rgb = np.array(batch.rgb, dtype=np.float64)
rendering['rgb'] = np.array(rendering['rgb'], dtype=np.float64)
cc_start_time = time.time()
rendering['rgb_cc'] = cc_fun(rendering['rgb'], gt_rgb)
print(f'Color corrected in {(time.time() - cc_start_time):0.3f}s')
if not config.eval_only_once and idx in showcase_indices:
showcase_idx = idx if config.deterministic_showcase else len(showcases)
showcases.append((showcase_idx, rendering, batch))
if not config.render_path:
rgb = postprocess_fn(rendering['rgb'])
rgb_cc = postprocess_fn(rendering['rgb_cc'])
rgb_gt = postprocess_fn(gt_rgb)
if config.eval_quantize_metrics:
# Ensures that the images written to disk reproduce the metrics.
rgb = np.round(rgb * 255) / 255
rgb_cc = np.round(rgb_cc * 255) / 255
if config.eval_crop_borders > 0:
crop_fn = lambda x, c=config.eval_crop_borders: x[c:-c, c:-c]
rgb = crop_fn(rgb)
rgb_cc = crop_fn(rgb_cc)
rgb_gt = crop_fn(rgb_gt)
metric = metric_harness(rgb, rgb_gt)
metric_cc = metric_harness(rgb_cc, rgb_gt)
if config.compute_disp_metrics:
for tag in ['mean', 'median']:
key = f'distance_{tag}'
if key in rendering:
disparity = 1 / (1 + rendering[key])
metric[f'disparity_{tag}_mse'] = float(
((disparity - batch.disps) ** 2).mean())
if config.compute_normal_metrics:
weights = rendering['acc'] * batch.alphas
normalized_normals_gt = ref_utils.l2_normalize(batch.normals)
for key, val in rendering.items():
if key.startswith('normals') and val is not None:
normalized_normals = ref_utils.l2_normalize(val)
metric[key + '_mae'] = ref_utils.compute_weighted_mae(
weights, normalized_normals, normalized_normals_gt)
for m, v in metric.items():
print(f'{m:30s} = {v:.4f}')
metrics.append(metric)
metrics_cc.append(metric_cc)
if config.eval_save_output and (config.eval_render_interval > 0):
if (idx % config.eval_render_interval) == 0:
utils.save_img_u8(postprocess_fn(rendering['rgb']),
path_fn(f'{filename}_color_{idx:03d}.png'))
utils.save_img_u8(postprocess_fn(rendering['rgb_cc']),
path_fn(f'{filename}_color_cc_{idx:03d}.png'))
if 'L' in rendering:
# save R_norm
utils.save_img_u8(rendering['R'] / rendering['R'].max(), path_fn(f'{filename}_R_norm_{idx:03d}.png'))
utils.save_img_u8(rendering['L'] / rendering['L'].max(), path_fn(f'{filename}_L_norm_{idx:03d}.png'))
for render_name in rendering.keys():
if render_name in EXTRA_VIS_KEYS:
# ipdb.set_trace()
render_tensor = rendering[render_name]
if render_tensor.shape[-1] == 1:
print(f'Reshape single channel image {render_name} to 3-channel.')
render_tensor = jnp.broadcast_to(render_tensor, [*render_tensor.shape[:-1], 3])
utils.save_img_u8(render_tensor, path_fn(f'{filename}_{render_name}_{idx:03d}.png'))
for key in ['distance_mean', 'distance_median']:
if key in rendering:
utils.save_img_f32(rendering[key],
path_fn(f'{filename}_{key}_{idx:03d}.tiff'))
for key in ['normals']:
if key in rendering:
utils.save_img_u8(rendering[key] / 2. + 0.5,
path_fn(f'{key}_{idx:03d}.png'))
# utils.save_img_f32(rendering['acc'], path_fn(f'acc_{idx:03d}.tiff'))
if (not config.eval_only_once) and (jax.host_id() == 0):
summary_writer.scalar('eval_median_render_time', np.median(render_times),
step)
for name in metrics[0]:
scores = [m[name] for m in metrics]
summary_writer.scalar('eval_metrics/' + name, np.mean(scores), step)
summary_writer.histogram('eval_metrics/' + 'perimage_' + name, scores,
step)
for name in metrics_cc[0]:
scores = [m[name] for m in metrics_cc]
summary_writer.scalar('eval_metrics_cc/' + name, np.mean(scores), step)
summary_writer.histogram('eval_metrics_cc/' + 'perimage_' + name,
scores, step)
for i, r, b in showcases:
if config.vis_decimate > 1:
d = config.vis_decimate
decimate_fn = lambda x, d=d: None if x is None else x[::d, ::d]
else:
decimate_fn = lambda x: x
r = jax.tree_util.tree_map(decimate_fn, r)
b = jax.tree_util.tree_map(decimate_fn, b)
visualizations = vis.visualize_suite(r, b.rays)
for k, v in visualizations.items():
if k == 'color':
v = postprocess_fn(v)
summary_writer.image(f'output_{k}_{i}', v, step)
if not config.render_path:
target = postprocess_fn(b.rgb)
summary_writer.image(f'true_color_{i}', target, step)
pred = postprocess_fn(visualizations['color'])
residual = np.clip(pred - target + 0.5, 0, 1)
summary_writer.image(f'true_residual_{i}', residual, step)
if config.compute_normal_metrics:
summary_writer.image(f'true_normals_{i}', b.normals / 2. + 0.5,
step)
if (config.eval_save_output and (not config.render_path) and
(jax.host_id() == 0)):
with utils.open_file(path_fn(f'render_times_{step}.txt'), 'w') as f:
f.write(' '.join([str(r) for r in render_times]))
for name in metrics[0]:
with utils.open_file(path_fn(f'metric_{name}_{step}.txt'), 'w') as f:
f.write(' '.join([str(m[name]) for m in metrics]))
for name in metrics_cc[0]:
with utils.open_file(path_fn(f'metric_cc_{name}_{step}.txt'), 'w') as f:
f.write(' '.join([str(m[name]) for m in metrics_cc]))
if config.eval_save_ray_data:
for i, r, b in showcases:
rays = {k: v for k, v in r.items() if 'ray_' in k}
np.set_printoptions(threshold=sys.maxsize)
with utils.open_file(path_fn(f'ray_data_{step}_{i}.txt'), 'w') as f:
f.write(repr(rays))
# A hack that forces Jax to keep all TPUs alive until every TPU is finished.
x = jnp.ones([jax.local_device_count()])
x = jax.device_get(jax.pmap(lambda x: jax.lax.psum(x, 'i'), 'i')(x))
print(x)
if config.eval_only_once:
break
if config.early_exit_steps is not None:
num_steps = config.early_exit_steps
else:
num_steps = config.max_steps
if int(step) >= num_steps:
break
last_step = step
if __name__ == '__main__':
with gin.config_scope('eval'):
app.run(main)