-
Notifications
You must be signed in to change notification settings - Fork 479
/
Copy patheval_corebench_2409_base_objective.py
188 lines (163 loc) · 7.35 KB
/
eval_corebench_2409_base_objective.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from mmengine.config import read_base
import os.path as osp
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
#######################################################################
# PART 0 Essential Configs #
#######################################################################
with read_base():
# Datasets Part
## Core Set
# ## Examination
from opencompass.configs.datasets.mmlu.mmlu_ppl_ac766d import mmlu_datasets
from opencompass.configs.datasets.mmlu_pro.mmlu_pro_few_shot_gen_bfaf90 import \
mmlu_pro_datasets
from opencompass.configs.datasets.cmmlu.cmmlu_ppl_041cbf import \
cmmlu_datasets
# ## Reasoning
from opencompass.configs.datasets.bbh.bbh_gen_98fba6 import bbh_datasets
from opencompass.configs.datasets.hellaswag.hellaswag_10shot_ppl_59c85e import hellaswag_datasets
from opencompass.configs.datasets.drop.drop_gen_a2697c import drop_datasets
# ## Math
from opencompass.configs.datasets.math.math_4shot_base_gen_43d5b6 import math_datasets
from opencompass.configs.datasets.gsm8k.gsm8k_gen_17d0dc import gsm8k_datasets
from opencompass.configs.datasets.MathBench.mathbench_2024_few_shot_mixed_4a3fd4 import \
mathbench_datasets
# ## Scientific
from opencompass.configs.datasets.gpqa.gpqa_few_shot_ppl_2c9cd6 import \
gpqa_datasets
# ## Coding
from opencompass.configs.datasets.humaneval.deprecated_humaneval_gen_d2537e import humaneval_datasets
from opencompass.configs.datasets.mbpp.sanitized_mbpp_gen_742f0c import sanitized_mbpp_datasets
# TODO: Add LiveCodeBench
# ## Instruction Following
# from opencompass.configs.datasets.IFEval.IFEval_gen_3321a3 import ifeval_datasets
# Summarizer
from opencompass.configs.summarizers.groups.mmlu import mmlu_summary_groups
from opencompass.configs.summarizers.groups.mmlu_pro import mmlu_pro_summary_groups
from opencompass.configs.summarizers.groups.cmmlu import cmmlu_summary_groups
from opencompass.configs.summarizers.groups.bbh import bbh_summary_groups
from opencompass.configs.summarizers.groups.mathbench_v1_2024 import \
mathbench_2024_summary_groups
# Model List
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_1_5b import models as lmdeploy_qwen2_5_1_5b_model
# from opencompass.configs.models.qwen.lmdeploy_qwen2_1_5b_instruct import models as lmdeploy_qwen2_1_5b_instruct_model
# from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import models as hf_internlm2_5_7b_chat_model
# from opencompass.configs.models.openbmb.hf_minicpm_2b_sft_bf16 import models as hf_minicpm_2b_sft_bf16_model
# from opencompass.configs.models.yi.hf_yi_1_5_6b_chat import models as hf_yi_1_5_6b_chat_model
# from opencompass.configs.models.gemma.hf_gemma_2b_it import models as hf_gemma_2b_it_model
# from opencompass.configs.models.yi.hf_yi_1_5_34b_chat import models as hf_yi_1_5_34b_chat_model
#######################################################################
# PART 1 Datasets List #
#######################################################################
# datasets list for evaluation
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
#######################################################################
# PART 2 Datset Summarizer #
#######################################################################
# with read_base():
core_summary_groups = [
{
'name': 'core_average',
'subsets': [
['mmlu', 'accuracy'],
['mmlu_pro', 'accuracy'],
['cmmlu', 'accuracy'],
['bbh', 'naive_average'],
['hellaswag', 'accuracy'],
['drop', 'accuracy'],
['math', 'accuracy'],
['gsm8k', 'accuracy'],
['mathbench-t (average)', 'naive_average'],
['GPQA_diamond', 'accuracy'],
['openai_humaneval', 'humaneval_pass@1'],
['IFEval', 'Prompt-level-strict-accuracy'],
['sanitized_mbpp', 'score'],
['mathbench-t (average)', 'naive_average']
],
},
]
summarizer = dict(
dataset_abbrs=[
['mmlu', 'accuracy'],
['mmlu_pro', 'accuracy'],
['cmmlu', 'accuracy'],
['bbh', 'naive_average'],
['hellaswag', 'accuracy'],
['drop', 'accuracy'],
['math', 'accuracy'],
['gsm8k', 'accuracy'],
['mathbench-t (average)', 'naive_average'],
['GPQA_diamond', 'accuracy'],
['openai_humaneval', 'humaneval_pass@1'],
['IFEval', 'Prompt-level-strict-accuracy'],
['sanitized_mbpp', 'score'],
'mathbench-a (average)',
'mathbench-t (average)'
'',
['mmlu', 'accuracy'],
['mmlu-stem', 'accuracy'],
['mmlu-social-science', 'accuracy'],
['mmlu-humanities', 'accuracy'],
['mmlu-other', 'accuracy'],
'',
['mmlu_pro', 'accuracy'],
['mmlu_pro_math','accuracy'],
['mmlu_pro_physics', 'accuracy'],
['mmlu_pro_chemistry', 'accuracy'],
['mmlu_pro_law', 'accuracy'],
['mmlu_pro_engineering', 'accuracy'],
['mmlu_pro_other', 'accuracy'],
['mmlu_pro_economics', 'accuracy'],
['mmlu_pro_health', 'accuracy'],
['mmlu_pro_psychology', 'accuracy'],
['mmlu_pro_business', 'accuracy'],
['mmlu_pro_biology', 'accuracy'],
['mmlu_pro_philosophy', 'accuracy'],
['mmlu_pro_computer_science','accuracy'],
['mmlu_pro_history', 'accuracy'],
'',
['cmmlu', 'accuracy'],
['cmmlu-stem', 'accuracy'],
['cmmlu-social-science', 'accuracy'],
['cmmlu-humanities', 'accuracy'],
['cmmlu-other', 'accuracy'],
['cmmlu-china-specific', 'accuracy'],
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []),
)
#######################################################################
# PART 3 Models List #
#######################################################################
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
#######################################################################
# PART 4 Inference/Evaluation Configuaration #
#######################################################################
# Local Runner
infer = dict(
partitioner=dict(
type=NumWorkerPartitioner,
num_worker=8
),
runner=dict(
type=LocalRunner,
max_num_workers=16,
retry=0, # Modify if needed
task=dict(type=OpenICLInferTask)
),
)
# eval with local runner
eval = dict(
partitioner=dict(type=NaivePartitioner, n=10),
runner=dict(
type=LocalRunner,
max_num_workers=16,
task=dict(type=OpenICLEvalTask)),
)
#######################################################################
# PART 5 Utils Configuaration #
#######################################################################
base_exp_dir = 'outputs/corebench_2409_objective/'
work_dir = osp.join(base_exp_dir, 'base_objective')