-
Notifications
You must be signed in to change notification settings - Fork 478
/
Copy patheval_corebench_2409_longcontext.py
138 lines (118 loc) · 5.77 KB
/
eval_corebench_2409_longcontext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os.path as osp
from copy import deepcopy
from mmengine.config import read_base
from opencompass.models import (HuggingFacewithChatTemplate,
TurboMindModelwithChatTemplate)
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner
from opencompass.runners import DLCRunner, LocalRunner
from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask
#######################################################################
# PART 0 Essential Configs #
#######################################################################
with read_base():
from opencompass.configs.datasets.longbench.longbench import \
longbench_datasets
from opencompass.configs.datasets.needlebench.needlebench_8k.needlebench_8k import \
needlebench_datasets as needlebench_8k_datasets
from opencompass.configs.datasets.needlebench.needlebench_32k.needlebench_32k import \
needlebench_datasets as needlebench_32k_datasets
from opencompass.configs.datasets.needlebench.needlebench_128k.needlebench_128k import \
needlebench_datasets as needlebench_128k_datasets
from opencompass.configs.datasets.ruler.ruler_8k_gen import \
ruler_datasets as ruler_8k_datasets
from opencompass.configs.datasets.ruler.ruler_32k_gen import \
ruler_datasets as ruler_32k_datasets
from opencompass.configs.datasets.ruler.ruler_128k_gen import \
ruler_datasets as ruler_128k_datasets
# Summary Groups
from opencompass.configs.summarizers.groups.longbench import \
longbench_summary_groups
from opencompass.configs.summarizers.groups.ruler import \
ruler_summary_groups
from opencompass.configs.summarizers.needlebench import (
needlebench_8k_summarizer, needlebench_32k_summarizer,
needlebench_128k_summarizer)
# Instruct models
from opencompass.configs.models.qwen.lmdeploy_qwen2_7b_instruct import \
models as lmdeploy_qwen2_7b_instruct_model
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat_1m import \
models as lmdeploy_internlm2_5_7b_1m_chat_model
from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_8b_instruct import \
models as llama3_1_8b_instruct_model
#######################################################################
# PART 1 Datasets List #
#######################################################################
# datasets list for evaluation
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
#######################################################################
# PART 2 Datset Summarizer #
#######################################################################
needlebench_8k_summary_groups = needlebench_8k_summarizer['summary_groups']
needlebench_32k_summary_groups = needlebench_32k_summarizer['summary_groups']
needlebench_128k_summary_groups = needlebench_128k_summarizer['summary_groups']
# Instruct models summarizer
summarizer = dict(
dataset_abbrs=[
['ruler_8k', 'naive_average'],
['ruler_32k', 'naive_average'],
['ruler_128k', 'naive_average'],
['NeedleBench-Overall-Score-8K', 'weighted_average'],
['NeedleBench-Overall-Score-32K', 'weighted_average'],
['NeedleBench-Overall-Score-128K', 'weighted_average'],
['longbench', 'naive_average'],
['longbench_zh', 'naive_average'],
['longbench_en', 'naive_average'],
'',
'longbench_single-document-qa',
'longbench_multi-document-qa',
'longbench_summarization',
'longbench_few-shot-learning',
'longbench_synthetic-tasks',
'longbench_code-completion',
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []),
)
#######################################################################
# PART 3 Models List #
#######################################################################
lmdeploy_qwen2_7b_instruct_model[0]['max_seq_len'] = 1048576
lmdeploy_qwen2_7b_instruct_model[0]['engine_config']['session_len'] = 1048576
lmdeploy_qwen2_7b_instruct_model[0]['engine_config']['tp'] = 4
lmdeploy_qwen2_7b_instruct_model[0]['engine_config']['rope_scaling_factor'] = 4
lmdeploy_qwen2_7b_instruct_model[0]['run_cfg']['num_gpus'] = 4
llama3_1_8b_instruct_model[0]['max_seq_len'] = 1048576
llama3_1_8b_instruct_model[0]['engine_config']['session_len'] = 1048576
llama3_1_8b_instruct_model[0]['engine_config']['tp'] = 4
llama3_1_8b_instruct_model[0]['engine_config']['rope_scaling_factor'] = 4
llama3_1_8b_instruct_model[0]['run_cfg']['num_gpus'] = 4
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
#######################################################################
# PART 4 Inference/Evaluation Configuaration #
#######################################################################
# Local Runner
infer = dict(
partitioner=dict(
type=NumWorkerPartitioner,
num_worker=8
),
runner=dict(
type=LocalRunner,
max_num_workers=16,
retry=0, # Modify if needed
task=dict(type=OpenICLInferTask)
),
)
# eval with local runner
eval = dict(
partitioner=dict(type=NaivePartitioner, n=10),
runner=dict(
type=LocalRunner,
max_num_workers=16,
task=dict(type=OpenICLEvalTask)),
)
#######################################################################
# PART 5 Utils Configuaration #
#######################################################################
base_exp_dir = 'outputs/corebench/'
work_dir = osp.join(base_exp_dir, 'long_context')