diff --git a/configs/_base_/models/dpt_vit-b16.py b/configs/_base_/models/dpt_vit-b16.py new file mode 100644 index 0000000000..dfd48a95f8 --- /dev/null +++ b/configs/_base_/models/dpt_vit-b16.py @@ -0,0 +1,31 @@ +norm_cfg = dict(type='SyncBN', requires_grad=True) +model = dict( + type='EncoderDecoder', + pretrained='pretrain/vit-b16_p16_224-80ecf9dd.pth', # noqa + backbone=dict( + type='VisionTransformer', + img_size=224, + embed_dims=768, + num_layers=12, + num_heads=12, + out_indices=(2, 5, 8, 11), + final_norm=False, + with_cls_token=True, + output_cls_token=True), + decode_head=dict( + type='DPTHead', + in_channels=(768, 768, 768, 768), + channels=256, + embed_dims=768, + post_process_channels=[96, 192, 384, 768], + num_classes=150, + readout_type='project', + input_transform='multiple_select', + in_index=(0, 1, 2, 3), + norm_cfg=norm_cfg, + loss_decode=dict( + type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), + auxiliary_head=None, + # model training and testing settings + train_cfg=dict(), + test_cfg=dict(mode='whole')) # yapf: disable diff --git a/configs/dpt/README.md b/configs/dpt/README.md new file mode 100644 index 0000000000..3dd994cc58 --- /dev/null +++ b/configs/dpt/README.md @@ -0,0 +1,47 @@ +# Vision Transformer for Dense Prediction + +## Introduction + + + +```latex +@article{dosoViTskiy2020, + title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, + author={DosoViTskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, + journal={arXiv preprint arXiv:2010.11929}, + year={2020} +} + +@article{Ranftl2021, + author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, + title = {Vision Transformers for Dense Prediction}, + journal = {ArXiv preprint}, + year = {2021}, +} +``` + +## Usage + +To use other repositories' pre-trained models, it is necessary to convert keys. + +We provide a script [`vit2mmseg.py`](../../tools/model_converters/vit2mmseg.py) in the tools directory to convert the key of models from [timm](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py) to MMSegmentation style. + +```shell +python tools/model_converters/vit2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH} +``` + +E.g. + +```shell +python tools/model_converters/vit2mmseg.py https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth pretrain/jx_vit_base_p16_224-80ecf9dd.pth +``` + +This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`. + +## Results and models + +### ADE20K + +| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download | +| ------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| DPT | ViT-B | 512x512 | 160000 | 8.09 | 10.41 | 46.97 | 48.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/dpt/dpt_vit-b16_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-20210809_172025.log.json) | diff --git a/configs/dpt/dpt.yml b/configs/dpt/dpt.yml new file mode 100644 index 0000000000..affb8d4f3f --- /dev/null +++ b/configs/dpt/dpt.yml @@ -0,0 +1,28 @@ +Collections: +- Metadata: + Training Data: + - ADE20K + Name: dpt +Models: +- Config: configs/dpt/dpt_vit-b16_512x512_160k_ade20k.py + In Collection: dpt + Metadata: + backbone: ViT-B + crop size: (512,512) + inference time (ms/im): + - backend: PyTorch + batch size: 1 + hardware: V100 + mode: FP32 + resolution: (512,512) + value: 96.06 + lr schd: 160000 + memory (GB): 8.09 + Name: dpt_vit-b16_512x512_160k_ade20k + Results: + Dataset: ADE20K + Metrics: + mIoU: 46.97 + mIoU(ms+flip): 48.34 + Task: Semantic Segmentation + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth diff --git a/configs/dpt/dpt_vit-b16_512x512_160k_ade20k.py b/configs/dpt/dpt_vit-b16_512x512_160k_ade20k.py new file mode 100644 index 0000000000..c751a68232 --- /dev/null +++ b/configs/dpt/dpt_vit-b16_512x512_160k_ade20k.py @@ -0,0 +1,32 @@ +_base_ = [ + '../_base_/models/dpt_vit-b16.py', '../_base_/datasets/ade20k.py', + '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' +] + +# AdamW optimizer, no weight decay for position embedding & layer norm +# in backbone +optimizer = dict( + _delete_=True, + type='AdamW', + lr=0.00006, + betas=(0.9, 0.999), + weight_decay=0.01, + paramwise_cfg=dict( + custom_keys={ + 'pos_embed': dict(decay_mult=0.), + 'cls_token': dict(decay_mult=0.), + 'norm': dict(decay_mult=0.) + })) + +lr_config = dict( + _delete_=True, + policy='poly', + warmup='linear', + warmup_iters=1500, + warmup_ratio=1e-6, + power=1.0, + min_lr=0.0, + by_epoch=False) + +# By default, models are trained on 8 GPUs with 2 images per GPU +data = dict(samples_per_gpu=2, workers_per_gpu=2) diff --git a/mmseg/models/decode_heads/__init__.py b/mmseg/models/decode_heads/__init__.py index b0daf0e1cb..f13f22035b 100644 --- a/mmseg/models/decode_heads/__init__.py +++ b/mmseg/models/decode_heads/__init__.py @@ -6,6 +6,7 @@ from .da_head import DAHead from .dm_head import DMHead from .dnl_head import DNLHead +from .dpt_head import DPTHead from .ema_head import EMAHead from .enc_head import EncHead from .fcn_head import FCNHead @@ -29,5 +30,5 @@ 'UPerHead', 'DepthwiseSeparableASPPHead', 'ANNHead', 'DAHead', 'OCRHead', 'EncHead', 'DepthwiseSeparableFCNHead', 'FPNHead', 'EMAHead', 'DNLHead', 'PointHead', 'APCHead', 'DMHead', 'LRASPPHead', 'SETRUPHead', - 'SETRMLAHead', 'SegformerHead' + 'SETRMLAHead', 'DPTHead', 'SETRMLAHead', 'SegformerHead' ] diff --git a/mmseg/models/decode_heads/dpt_head.py b/mmseg/models/decode_heads/dpt_head.py new file mode 100644 index 0000000000..7028f2a230 --- /dev/null +++ b/mmseg/models/decode_heads/dpt_head.py @@ -0,0 +1,293 @@ +import math + +import torch +import torch.nn as nn +from mmcv.cnn import ConvModule, Linear, build_activation_layer +from mmcv.runner import BaseModule + +from mmseg.ops import resize +from ..builder import HEADS +from .decode_head import BaseDecodeHead + + +class ReassembleBlocks(BaseModule): + """ViTPostProcessBlock, process cls_token in ViT backbone output and + rearrange the feature vector to feature map. + + Args: + in_channels (int): ViT feature channels. Default: 768. + out_channels (List): output channels of each stage. + Default: [96, 192, 384, 768]. + readout_type (str): Type of readout operation. Default: 'ignore'. + patch_size (int): The patch size. Default: 16. + init_cfg (dict, optional): Initialization config dict. Default: None. + """ + + def __init__(self, + in_channels=768, + out_channels=[96, 192, 384, 768], + readout_type='ignore', + patch_size=16, + init_cfg=None): + super(ReassembleBlocks, self).__init__(init_cfg) + + assert readout_type in ['ignore', 'add', 'project'] + self.readout_type = readout_type + self.patch_size = patch_size + + self.projects = nn.ModuleList([ + ConvModule( + in_channels=in_channels, + out_channels=out_channel, + kernel_size=1, + act_cfg=None, + ) for out_channel in out_channels + ]) + + self.resize_layers = nn.ModuleList([ + nn.ConvTranspose2d( + in_channels=out_channels[0], + out_channels=out_channels[0], + kernel_size=4, + stride=4, + padding=0), + nn.ConvTranspose2d( + in_channels=out_channels[1], + out_channels=out_channels[1], + kernel_size=2, + stride=2, + padding=0), + nn.Identity(), + nn.Conv2d( + in_channels=out_channels[3], + out_channels=out_channels[3], + kernel_size=3, + stride=2, + padding=1) + ]) + if self.readout_type == 'project': + self.readout_projects = nn.ModuleList() + for _ in range(len(self.projects)): + self.readout_projects.append( + nn.Sequential( + Linear(2 * in_channels, in_channels), + build_activation_layer(dict(type='GELU')))) + + def forward(self, inputs): + assert isinstance(inputs, list) + out = [] + for i, x in enumerate(inputs): + assert len(x) == 2 + x, cls_token = x[0], x[1] + feature_shape = x.shape + if self.readout_type == 'project': + x = x.flatten(2).permute((0, 2, 1)) + readout = cls_token.unsqueeze(1).expand_as(x) + x = self.readout_projects[i](torch.cat((x, readout), -1)) + x = x.permute(0, 2, 1).reshape(feature_shape) + elif self.readout_type == 'add': + x = x.flatten(2) + cls_token.unsqueeze(-1) + x = x.reshape(feature_shape) + else: + pass + x = self.projects[i](x) + x = self.resize_layers[i](x) + out.append(x) + return out + + +class PreActResidualConvUnit(BaseModule): + """ResidualConvUnit, pre-activate residual unit. + + Args: + in_channels (int): number of channels in the input feature map. + act_cfg (dict): dictionary to construct and config activation layer. + norm_cfg (dict): dictionary to construct and config norm layer. + stride (int): stride of the first block. Default: 1 + dilation (int): dilation rate for convs layers. Default: 1. + init_cfg (dict, optional): Initialization config dict. Default: None. + """ + + def __init__(self, + in_channels, + act_cfg, + norm_cfg, + stride=1, + dilation=1, + init_cfg=None): + super(PreActResidualConvUnit, self).__init__(init_cfg) + + self.conv1 = ConvModule( + in_channels, + in_channels, + 3, + stride=stride, + padding=dilation, + dilation=dilation, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + bias=False, + order=('act', 'conv', 'norm')) + + self.conv2 = ConvModule( + in_channels, + in_channels, + 3, + padding=1, + norm_cfg=norm_cfg, + act_cfg=act_cfg, + bias=False, + order=('act', 'conv', 'norm')) + + def forward(self, inputs): + inputs_ = inputs.clone() + x = self.conv1(inputs) + x = self.conv2(x) + return x + inputs_ + + +class FeatureFusionBlock(BaseModule): + """FeatureFusionBlock, merge feature map from different stages. + + Args: + in_channels (int): Input channels. + act_cfg (dict): The activation config for ResidualConvUnit. + norm_cfg (dict): Config dict for normalization layer. + expand (bool): Whether expand the channels in post process block. + Default: False. + align_corners (bool): align_corner setting for bilinear upsample. + Default: True. + init_cfg (dict, optional): Initialization config dict. Default: None. + """ + + def __init__(self, + in_channels, + act_cfg, + norm_cfg, + expand=False, + align_corners=True, + init_cfg=None): + super(FeatureFusionBlock, self).__init__(init_cfg) + + self.in_channels = in_channels + self.expand = expand + self.align_corners = align_corners + + self.out_channels = in_channels + if self.expand: + self.out_channels = in_channels // 2 + + self.project = ConvModule( + self.in_channels, + self.out_channels, + kernel_size=1, + act_cfg=None, + bias=True) + + self.res_conv_unit1 = PreActResidualConvUnit( + in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg) + self.res_conv_unit2 = PreActResidualConvUnit( + in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg) + + def forward(self, *inputs): + x = inputs[0] + if len(inputs) == 2: + if x.shape != inputs[1].shape: + res = resize( + inputs[1], + size=(x.shape[2], x.shape[3]), + mode='bilinear', + align_corners=False) + else: + res = inputs[1] + x = x + self.res_conv_unit1(res) + x = self.res_conv_unit2(x) + x = resize( + x, + scale_factor=2, + mode='bilinear', + align_corners=self.align_corners) + x = self.project(x) + return x + + +@HEADS.register_module() +class DPTHead(BaseDecodeHead): + """Vision Transformers for Dense Prediction. + + This head is implemented of `DPT `_. + + Args: + embed_dims (int): The embed dimension of the ViT backbone. + Default: 768. + post_process_channels (List): Out channels of post process conv + layers. Default: [96, 192, 384, 768]. + readout_type (str): Type of readout operation. Default: 'ignore'. + patch_size (int): The patch size. Default: 16. + expand_channels (bool): Whether expand the channels in post process + block. Default: False. + act_cfg (dict): The activation config for residual conv unit. + Defalut dict(type='ReLU'). + norm_cfg (dict): Config dict for normalization layer. + Default: dict(type='BN'). + """ + + def __init__(self, + embed_dims=768, + post_process_channels=[96, 192, 384, 768], + readout_type='ignore', + patch_size=16, + expand_channels=False, + act_cfg=dict(type='ReLU'), + norm_cfg=dict(type='BN'), + **kwargs): + super(DPTHead, self).__init__(**kwargs) + + self.in_channels = self.in_channels + self.expand_channels = expand_channels + self.reassemble_blocks = ReassembleBlocks(embed_dims, + post_process_channels, + readout_type, patch_size) + + self.post_process_channels = [ + channel * math.pow(2, i) if expand_channels else channel + for i, channel in enumerate(post_process_channels) + ] + self.convs = nn.ModuleList() + for channel in self.post_process_channels: + self.convs.append( + ConvModule( + channel, + self.channels, + kernel_size=3, + padding=1, + act_cfg=None, + bias=False)) + self.fusion_blocks = nn.ModuleList() + for _ in range(len(self.convs)): + self.fusion_blocks.append( + FeatureFusionBlock(self.channels, act_cfg, norm_cfg)) + self.fusion_blocks[0].res_conv_unit1 = None + self.project = ConvModule( + self.channels, + self.channels, + kernel_size=3, + padding=1, + norm_cfg=norm_cfg) + self.num_fusion_blocks = len(self.fusion_blocks) + self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers) + self.num_post_process_channels = len(self.post_process_channels) + assert self.num_fusion_blocks == self.num_reassemble_blocks + assert self.num_reassemble_blocks == self.num_post_process_channels + + def forward(self, inputs): + assert len(inputs) == self.num_reassemble_blocks + x = self._transform_inputs(inputs) + x = self.reassemble_blocks(x) + x = [self.convs[i](feature) for i, feature in enumerate(x)] + out = self.fusion_blocks[0](x[-1]) + for i in range(1, len(self.fusion_blocks)): + out = self.fusion_blocks[i](out, x[-(i + 1)]) + out = self.project(out) + out = self.cls_seg(out) + return out diff --git a/model-index.yml b/model-index.yml index 1e39e30197..d08ad33178 100644 --- a/model-index.yml +++ b/model-index.yml @@ -8,6 +8,7 @@ Import: - configs/deeplabv3plus/deeplabv3plus.yml - configs/dmnet/dmnet.yml - configs/dnlnet/dnlnet.yml +- configs/dpt/dpt.yml - configs/emanet/emanet.yml - configs/encnet/encnet.yml - configs/fastscnn/fastscnn.yml diff --git a/tests/test_models/test_heads/test_dpt_head.py b/tests/test_models/test_heads/test_dpt_head.py new file mode 100644 index 0000000000..5b0e9ebc4c --- /dev/null +++ b/tests/test_models/test_heads/test_dpt_head.py @@ -0,0 +1,48 @@ +import pytest +import torch + +from mmseg.models.decode_heads import DPTHead + + +def test_dpt_head(): + + with pytest.raises(AssertionError): + # input_transform must be 'multiple_select' + head = DPTHead( + in_channels=[768, 768, 768, 768], + channels=256, + num_classes=19, + in_index=[0, 1, 2, 3]) + + head = DPTHead( + in_channels=[768, 768, 768, 768], + channels=256, + num_classes=19, + in_index=[0, 1, 2, 3], + input_transform='multiple_select') + + inputs = [[torch.randn(4, 768, 2, 2), + torch.randn(4, 768)] for _ in range(4)] + output = head(inputs) + assert output.shape == torch.Size((4, 19, 16, 16)) + + # test readout operation + head = DPTHead( + in_channels=[768, 768, 768, 768], + channels=256, + num_classes=19, + in_index=[0, 1, 2, 3], + input_transform='multiple_select', + readout_type='add') + output = head(inputs) + assert output.shape == torch.Size((4, 19, 16, 16)) + + head = DPTHead( + in_channels=[768, 768, 768, 768], + channels=256, + num_classes=19, + in_index=[0, 1, 2, 3], + input_transform='multiple_select', + readout_type='project') + output = head(inputs) + assert output.shape == torch.Size((4, 19, 16, 16))