Releases: open-mmlab/mmsegmentation
Releases · open-mmlab/mmsegmentation
MMSegmentation v0.20.0 Release
Highlights
- Support Twins (#989)
- Support a real-time segmentation model STDC (#995)
- Support a widely-used segmentation model in lane detection ERFNet (#960)
- Support A Remote Sensing Land-Cover Dataset LoveDA (#1028)
- Support focal loss (#1024)
New Features
- Support Twins (#989)
- Support a real-time segmentation model STDC (#995)
- Support a widely-used segmentation model in lane detection ERFNet (#960)
- Add SETR cityscapes benchmark (#1087)
- Add BiSeNetV1 COCO-Stuff 164k benchmark (#1019)
- Support focal loss (#1024)
- Add Cutout transform (#1022)
Improvements
- Set a random seed when the user does not set a seed (#1039)
- Add CircleCI setup (#1086)
- Skip CI on ignoring given paths (#1078)
- Add abstract and image for every paper (#1060)
- Create a symbolic link on windows (#1090)
- Support video demo using trained model (#1014)
Bug Fixes
- Fix incorrectly loading init_cfg or pretrained models of several transformer models (#999, #1069, #1102)
- Fix EfficientMultiheadAttention in SegFormer (#1003)
- Remove
fp16
folder inconfigs
(#1031) - Fix several typos in .yml file (Dice Metric #1041, ADE20K dataset #1120, Training Memory (GB) #1083)
- Fix test error when using
--show-dir
(#1091) - Fix dist training infinite waiting issue (#1035)
- Change the upper version of mmcv to 1.5.0 (#1096)
- Fix symlink failure on Windows (#1038)
- Cancel previous runs that are not completed (#1118)
- Unified links of readthedocs in docs (#1119)
Contributors
- @Junjue-Wang made their first contribution in #1028
- @ddebby made their first contribution in #1066
- @del-zhenwu made their first contribution in #1078
- @KangBK0120 made their first contribution in #1106
- @zergzzlun made their first contribution in #1091
- @fingertap made their first contribution in #1035
- @irvingzhang0512 made their first contribution in #1014
- @littleSunlxy made their first contribution in #989
- @lkm2835
- @RockeyCoss
- @MengzhangLI
- @Junjun2016
- @xiexinch
- @xvjiarui
MMSegmentation v0.19.0 Release
Highlights
- Support TIMMBackbone wrapper (#998)
- Support custom hook (#428)
- Add codespell pre-commit hook (#920)
- Add FastFCN benchmark on ADE20K (#972)
New Features
- Support TIMMBackbone wrapper (#998)
- Support custom hook (#428)
- Add FastFCN benchmark on ADE20K (#972)
- Add codespell pre-commit hook and fix typos (#920)
Improvements
- Make inputs & channels smaller in unittests (#1004)
- Change
self.loss_decode
back todict
in Single Loss situation (#1002)
Bug Fixes
- Fix typo in usage example (#1003)
- Add contiguous after permutation in ViT (#992)
- Fix the invalid link (#985)
- Fix bug in CI with python 3.9 (#994)
- Fix bug when loading class name form file in custom dataset (#923)
Contributors
- @ShoupingShan made their first contribution in #923
- @RockeyCoss made their first contribution in #954
- @HarborYuan made their first contribution in #992
- @lkm2835 made their first contribution in #1003
- @gszh made their first contribution in #428
- @xvjiarui
- @VVsssssk
- @MengzhangLI
- @Junjun2016
MMSegmentation v0.18.0 Release
Highlights
- Support three real-time segmentation models (ICNet #884, BiSeNetV1 #851, and BiSeNetV2 #804)
- Support one efficient segmentation model (FastFCN #885)
- Support one efficient non-local/self-attention based segmentation model (ISANet #70)
- Support COCO-Stuff 10k and 164k datasets (#625)
- Support evaluate concated dataset separately (#833)
- Support loading GT for evaluation from multi-file backend (#867)
New Features
- Support three real-time segmentation models (ICNet #884, BiSeNetV1 #851, and BiSeNetV2 #804)
- Support one efficient segmentation model (FastFCN #885)
- Support one efficient non-local/self-attention based segmentation model (ISANet #70)
- Support COCO-Stuff 10k and 164k datasets (#625)
- Support evaluate concated dataset separately (#833)
Improvements
- Support loading GT for evaluation from multi-file backend (#867)
- Auto-convert SyncBN to BN when training on DP automatly(#772)
- Refactor Swin-Transformer (#800)
Bug Fixes
MMSegmentation v0.17.0 Release
Highlights
- Support SegFormer
- Support DPT
- Support Dark Zurich and Nighttime Driving datasets
- Support progressive evaluation
New Features
- Support SegFormer (#599)
- Support DPT (#605)
- Support Dark Zurich and Nighttime Driving datasets (#815)
- Support progressive evaluation (#709)
Improvements
- Add multiscale_output interface and unittests for HRNet (#830)
- Support inherit cityscapes dataset (#750)
- Fix some typos in README.md (#824)
- Delete convert function and add instruction to ViT/Swin README.md (#791)
- Add vit/swin/mit convert weight scripts (#783)
- Add copyright files (#796)
Bug Fixes
MMSegmentation v0.16.0 Release
Highlights
- Support PyTorch 1.9
- Support SegFormer backbone MiT
- Support md2yml pre-commit hook
- Support frozen stage for HRNet
New Features
- Support SegFormer backbone MiT (#594)
- Support md2yml pre-commit hook (#732)
- Support mim (#717)
- Add mmseg2torchserve tool (#552)
Improvements
- Support hrnet frozen stage (#743)
- Add template of reimplementation questions (#741)
- Output pdf and epub formats for readthedocs (#742)
- Refine the docstring of ResNet (#723)
- Replace interpolate with resize (#731)
- Update resource limit (#700)
- Update config.md (#678)
Bug Fixes
- Fix ATTENTION registry (#729)
- Fix analyze log script (#716)
- Fix doc api display (#725)
- Fix patch_embed and pos_embed mismatch error (#685)
- Fix efficient test for multi-node (#707)
- Fix init_cfg in resnet backbone (#697)
- Fix efficient test bug (#702)
- Fix url error in config docs (#680)
- Fix mmcv installation (#676)
- Fix torch version (#670)
Contributors
@sshuair @xiexinch @Junjun2016 @mmeendez8 @xvjiarui @Sennnnn @puhsu @BIGWangYuDong @keke1u @daavoo
MMSegmentation v0.15.0 Release
Highlights
- Support ViT, SETR, and Swin-Transformer
- Add Chinese documentation
- Unified parameter initialization
Bug Fixes
- Fix typo and links (#608)
- Fix Dockerfile (#607)
- Fix ViT init (#609)
- Fix mmcv version compatible table (#658)
- Fix model links of DMNet and UNet (#660)
New Features
- Support loading DeiT weights (#538)
- Support SETR (#531, #635)
- Add config and models for ViT backbone with UperHead (#520, #635)
- Support Swin-Transformer (#511)
- Add higher accuracy FastSCNN (#606)
- Add Chinese documentation (#666)
Improvements
MMSegmentation v0.14.0 Release
MMSegmentation v0.13.0 Release
Highlights
- Support Pascal Context Class-59 dataset.
- Support Visual Transformer Backbone.
- Support mFscore metric.
Bug Fixes
- Fixed Colaboratory tutorial (#451)
- Fixed mIoU calculation range (#471)
- Fixed sem_fpn, unet README.md (#492)
- Fixed
num_classes
in FCN for Pascal Context 60-class dataset (#488) - Fixed FP16 inference (#497)
New Features
- Support dynamic export and visualize to pytorch2onnx (#463)
- Support export to torchscript (#469, #499)
- Support Pascal Context Class-59 dataset (#459)
- Support Visual Transformer backbone (#465)
- Support UpSample Neck (#512)
- Support mFscore metric (#509)
Improvements
- Add more CI for PyTorch (#460)
- Add print model graph args for tools/print_config.py (#451)
- Add cfg links in modelzoo README.md (#468)
- Add BaseSegmentor import to segmentors/init.py (#495)
- Add MMOCR, MMGeneration links (#501, #506)
- Add Chinese QR code (#506)
- Use MMCV MODEL_REGISTRY (#515)
- Add ONNX testing tools (#498)
- Replace data_dict calling 'img' key to support MMDet3D (#514)
- Support reading class_weight from file in loss function (#513)
- Make tags as comment (#505)
- Use MMCV EvalHook (#438)
MMSegmentation v0.12.0 Release
Highlights
- Support FCN-Dilate 6 model.
- Support Dice Loss.
Bug Fixes
- Fixed PhotoMetricDistortion Doc (#388)
- Fixed install scripts (#399)
- Fixed Dice Loss multi-class (#417)
New Features
- Support Dice Loss (#396)
- Add plot logs tool (#426)
- Add opacity option to show_result (#425)
- Speed up mIoU metric (#430)
Improvements
MMSegmentation v0.11.0 Release
Highlights
- Support memory efficient test, add more UNet models.
Bug Fixes
New Features
Improvements
- Move train_cfg/test_cfg inside model (#341)