Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

7000 loss value when training cifar10 #31

Open
zoli333 opened this issue Feb 20, 2018 · 0 comments
Open

7000 loss value when training cifar10 #31

zoli333 opened this issue Feb 20, 2018 · 0 comments

Comments

@zoli333
Copy link

zoli333 commented Feb 20, 2018

Hello,
I am trying to train cifar10 with the nn conv2d, and dense layers, and with initialization I got 7229.39 loss at the first step (and after a while this is just 5000). I am training with the same model architecture proposed in the weight norm article (Tim Salimans, Kingma). However with older nn dense and conv2d implementation this does not happen (also when I am not using the initialization). This is the implementation I use and got proper loss (around 2.3 at the first steps):

   def conv2d(x, num_filters, filter_size=[3,3],  pad='SAME', stride=[1,1], nonlinearity=None, init_scale=1., init=False, name=''):
    with tf.variable_scope(name):
        V = tf.get_variable('V', shape=filter_size+[int(x.get_shape()[-1]),num_filters], dtype=tf.float32,
                              initializer=tf.random_normal_initializer(0, 0.05), trainable=True)
        g = tf.get_variable('g', shape=[num_filters], dtype=tf.float32,
                              initializer=tf.constant_initializer(1.), trainable=True)
        b = tf.get_variable('b', shape=[num_filters], dtype=tf.float32,
                              initializer=tf.constant_initializer(0.), trainable=True)
        
        
        if init:  # normalize x
            v_norm = tf.nn.l2_normalize(V,[0,1,2])
            x = tf.nn.conv2d(x, v_norm, strides=[1] + stride + [1],padding=pad)
            m_init, v_init = tf.nn.moments(x, [0,1,2])
            scale_init=init_scale/tf.sqrt(v_init + 1e-08)
            g = g.assign(scale_init)
            b = b.assign(-m_init*scale_init)
            x = tf.reshape(scale_init,[1,1,1,num_filters])*(x-tf.reshape(m_init,[1,1,1,num_filters]))
        else:
            W = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(V, [0, 1, 2])
            
            # calculate convolutional layer output
            x = tf.nn.bias_add(tf.nn.conv2d(x, W, [1] + stride + [1], pad), b)
            
        
        # apply nonlinearity
        if nonlinearity is not None:
            x = nonlinearity(x)

        return x

I've investigated the most recent implementation of nn (dense and conv2d layers). With this implementation on a tiny example the mean is just 0.001, and the variance is 0.95. With the code above I got -10^-7 and and 1.0005. Is that I am missing something here, the code in the nn library does not do the same as the code above?
Here is the demo code I used for test:

import tensorflow as tf
import numpy as np

sess = tf.Session()

padding='SAME'
init=True
num_filters=96
filter_size=[3,3]
stride=[1,1]
init_scale=1.
pad='SAME'
x = tf.get_variable('x',shape=[100,32,32,3],dtype=tf.float32,
                      initializer=tf.random_normal_initializer(0,1.0), trainable=True)
V = tf.get_variable('V', shape=filter_size+[int(x.get_shape()[-1]),num_filters], dtype=tf.float32,
                      initializer=tf.random_normal_initializer(0, 0.05), trainable=True)
g = tf.get_variable('g', shape=[num_filters], dtype=tf.float32,
                      initializer=tf.constant_initializer(1.), trainable=True)
b = tf.get_variable('b', shape=[num_filters], dtype=tf.float32,
                      initializer=tf.constant_initializer(0.), trainable=True)

# use weight normalization (Salimans & Kingma, 2016)
W = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(V, [0, 1, 2])

# calculate convolutional layer output
x = tf.nn.bias_add(tf.nn.conv2d(x, W, [1] + stride + [1], pad), b)

if init:  # normalize x
    m_init, v_init = tf.nn.moments(x, [0,1,2])
    scale_init = init_scale / tf.sqrt(v_init + 1e-10)
    with tf.control_dependencies([g.assign(g * scale_init), b.assign_add(-m_init * scale_init)]):
        x = tf.identity(x)


init = tf.global_variables_initializer()

sess.run(init)

# mean and var should be zero and unit after initialization
a = sess.run(x)
print np.mean(a)
print np.var(a)
sess.close()

Also I don't understand why in the code it is assign_add instead of assign. I do think the steps before initialization are happening before the assign, so the moments computed in the init step not from t=V*x/||V|| but from the output of the layer. I assume that the whole initialization step is scaled by g, and the bias.

@zoli333 zoli333 changed the title 7000 loss training cifar10 7000 loss value when training cifar10 Feb 20, 2018
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant